Show that the argument form with premises (p∧t)->(r∨s), q->(u∧t), u->p, and s and conclusion q -> r is valid by using rules of inferences.

razdiral3m

razdiral3m

Open question

2022-08-17

Show that the argument form with premises (pt)(rs), q(ut), up, and urc or rs and conclusion qr is valid by using rules of inferences.
Rule of InferenceTautology (Deduction Theorem)NamePP(PQ)AdditionPQ¯  PQ(PQ)PSimplificationP  P[(P)(Q)](PQ)ConjunctionQ  PQ¯  P[(P)(PQ)](PQ)Modus PonensPQ  Q¯  Q[(Q)(PQ)]PModus TollensPQ  P¯  PQ[(PQ)(QR)](PR)Hypothetical Syllogism (''chaining'')QR  R¯  PQ[(PQ)(P)]QDisjunctive syllogismP  Q¯  PQ[(PQ)(PR)](QR)ResolutionPR  QR¯  

Answer & Explanation

Marley Abbott

Marley Abbott

Beginner2022-08-18Added 4 answers

Step 1
1) qu Hypothesis
2) utu Simplification
3) up Hypothesis
4) utp Hipothetical Syllogism
5) qp Hyp. Sull (using (1) and (4))
6) ut Simplification
7) utp (Logical eqvivalence involoing Statements) (from (4) and (6))
8) ptrs (Hypothesis)
9) utrs (Hyp. Syllogism using (4) and (8))
10) qrs (Hyp. Syll. using (1 and (9))
11) s (Hypothesis)
12) (rs)r (Disjunctive syllogism)(using (11) and (12))
13) q (Hyp. Syll. using (10) and (12))

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?