Finding x 2 </msup> + y 2 </msup> + z 2 </

Logan Wyatt

Logan Wyatt

Answered question

2022-07-07

Finding x 2 + y 2 + z 2 given that x + y + z = 0, x 3 + y 3 + z 3 = 3 and x 4 + y 4 + z 4 = 15

Answer & Explanation

Giovanna Erickson

Giovanna Erickson

Beginner2022-07-08Added 14 answers

Note that
0 = ( x + y + z ) 2 = ( x 2 + y 2 + z 2 ) + 2 ( x y + x z + y z ), so x 2 + y 2 + z 2 = 2 ( x y + x z + y z ).
And
15 = x 4 + y 4 + z 4 = ( x 2 + y 2 + z 2 ) 2 2 ( x 2 y 2 + x 2 z 2 + y 2 z 2 ) .
And
( x y + x z + y z ) 2 = ( x 2 y 2 + x 2 z 2 + y 2 z 2 ) + 2 ( x 2 y z + x y 2 z + x y z 2 ) = ( x 2 y 2 + x 2 z 2 + y 2 z 2 ) + 2 x y z ( x + y + z ) = x 2 y 2 + x 2 z 2 + y 2 z 2 + 2 x y z ( 0 ) = x 2 y 2 + x 2 z 2 + y 2 z 2
hence
x 2 y 2 + x 2 z 2 + y 2 z 2 = ( x y + x z + y z ) 2 .
So
15 = x 4 + y 4 + z 4 = ( x 2 + y 2 + z 2 ) 2 2 ( x 2 y 2 + x 2 z 2 + y 2 z 2 ) = ( x 2 + y 2 + z 2 ) 2 2 ( x y + x z + y z ) 2 = ( x 2 + y 2 + z 2 ) 2 2 ( x y + x z + y z ) ( x y + x z + y z ) = ( x 2 + y 2 + z 2 ) 2 + ( x 2 + y 2 + z 2 ) ( x y + x z + y z ) = ( x 2 + y 2 + z 2 ) 2 + ( x 2 + y 2 + z 2 ) ( 1 2 ( x 2 + y 2 + z 2 ) ) = ( x 2 + y 2 + z 2 ) 2 1 2 ( x 2 + y 2 + z 2 ) 2 = 1 2 ( x 2 + y 2 + z 2 ) 2
so ( x 2 + y 2 + z 2 ) 2 = 30, hence x 2 + y 2 + z 2 = 30
racodelitusmn

racodelitusmn

Beginner2022-07-09Added 5 answers

Yes, this can be solved without guessing, using Newton's identities.
Since x + y + z = 0, they are the roots of t 3 + a t b = 0.
Newton's identities give us (in a straightforward mechanical manner) that
x 3 + y 3 + z 3 = 3 b
x 4 + y 4 + z 4 = 2 a 2
and
x 2 + y 2 + z 2 = 2 a
This gives us b = 1 and 2 a 2 = 15.
You can solve for a and find the value of x 2 + y 2 + z 2 = 2 a. Note that if you assume x , y , z are real, then you need to pick a < 0 which gives us
x 2 + y 2 + z 2 = 30
Note that you did not even need to use the value of x 3 + y 3 + z 3 .

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?