Evaluate the indefinite integral. \int \frac{x+\ln x}{x}dx

eiraszero11cu

eiraszero11cu

Answered question

2021-12-26

Evaluate the indefinite integral.
x+lnxxdx

Answer & Explanation

Corgnatiui

Corgnatiui

Beginner2021-12-27Added 35 answers

Step 1
The indefinite integral is given x+lnxxdx
Simplify the indefinite integral.
x+lnxxdx=xxdx+lnxxdx
=1dx+lnxxdx
=x+lnxxdx
Substitute lnx.
1xdxdt
Step 2
Apply the values integral,
lnxxdx=tdt
=t22+c.
Replace t with lnx,
lnxxdx=(lnx)22+c.
The final solution of the integral is,
x+lnxxdx=x+(lnx)22+C.
Foreckije

Foreckije

Beginner2021-12-28Added 32 answers

ln(x)+xxdx
=(ln(x)x+1)dx
=ln(x)xdx+1dx
ln(x)xdx
=udu
=u22
=ln2(x)2
1dx
ln(x)xdx+1dx
=ln2(x)2+x
ln(x)+xxdx
=ln2(x)2+x+C
karton

karton

Expert2022-01-04Added 613 answers

x+ln(x)xdx
Separate the fraction
xx+ln(x)xdx
Divide
1+ln(x)xdx
Use properties of integrals
1dx+ln(x)xdx
Evaluate the integrals
x+ln(x)22
Add C
Answer:
x+ln(x)22+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?