Deangelo Hardy

2022-04-07

Find the solution of the system .

Ausspruchx807

Step 1
The solution for such systems is as follows:

Let
$=\left[\begin{array}{cc}1& -2\\ 4& 5\end{array}\right]$
We have ${\lambda }_{1}=3+2i,{\lambda }_{2}=\overline{{\lambda }_{1}}=3-2i$ and
${v}_{1}=\left[\begin{array}{c}-1+i\\ 2\end{array}\right]=\left[\begin{array}{c}-1\\ 2\end{array}\right]+i\left[\begin{array}{c}1\\ 0\end{array}\right]$
and ${v}_{2}=\left[\begin{array}{c}-1-i\\ 2\end{array}\right]=\left[\begin{array}{c}-1\\ 2\end{array}\right]+i\left[\begin{array}{c}-1\\ 0\end{array}\right]$
Step 2
Now we construct the matrix $P$ from the imaginary and real parts of the eigenvectors;
$P=\left[\begin{array}{cc}1& -1\\ 0& 2\end{array}\right]⇒{P}^{-1}=\frac{1}{13}\left[\begin{array}{cc}3& 2\\ -2& 3\end{array}\right]$
and

${P}^{-1}AP=\left[\begin{array}{cc}3& -2\\ 2& 3\end{array}\right]$
And the final solution

$\left[\begin{array}{c}x\left(t\right)\\ y\left(t\right)\end{array}\right]=P{e}^{3t}\left[\begin{array}{cc}\mathrm{cos}2t& -\mathrm{sin}2t\\ \mathrm{sin}2t& \mathrm{cos}2t\end{array}\right]{P}^{-1}\left[\begin{array}{c}{x}_{0}\\ {y}_{0}\end{array}\right]$
and

$\left[\begin{array}{c}x\left(t\right)\\ y\left(t\right)\end{array}\right]=\frac{{e}^{3t}}{13}\left[\begin{array}{cc}1& -1\\ 0& 2\end{array}\right]\left[\begin{array}{cc}\mathrm{cos}2t& -\mathrm{sin}2t\\ \mathrm{sin}2t& \mathrm{cos}2t\end{array}\right]\left[\begin{array}{cc}3& 2\\ -2& 3\end{array}\right]\left[\begin{array}{c}{x}_{0}\\ {y}_{0}\end{array}\right]$

Do you have a similar question?