Find the derivative of <msqrt> 3 + x </msqrt> e 5 + 4

studovnaem4z6

studovnaem4z6

Answered question

2022-04-10

Find the derivative of 3 + x e 5 + 4 x .

Answer & Explanation

Ahmed Kirby

Ahmed Kirby

Beginner2022-04-11Added 17 answers

Use axn=axn to rewrite 3+x as (3+x)12.

ddx[(3+x)12e5+4x]

Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=(3+x)12 and g(x)=e5+4x.

(3+x)12ddx[e5+4x]+e5+4xddx[(3+x)12]

Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=ex and g(x)=5+4x.

(3+x)12(e5+4xddx[5+4x])+e5+4xddx[(3+x)12]

Differentiate.

4((3+x)12e5+4x)+e5+4xddx[(3+x)12]

Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x12 and g(x)=3+x.

4(3+x)12e5+4x+e5+4x(12(3+x)12-1ddx[3+x])

To write -1 as a fraction with a common denominator, multiply by 22.

4(3+x)12e5+4x+e5+4x(12(3+x)12-122ddx[3+x])

Combine -1 and 22.

4(3+x)12e5+4x+e5+4x(12(3+x)12+-122ddx[3+x])

Combine the numerators over the common denominator.

4(3+x)12e5+4x+e5+4x(12(3+x)1-122ddx[3+x])

Simplify the numerator.

4(3+x)12e5+4x+e5+4x(12(3+x)-12ddx[3+x])

Combine fractions.

4(3+x)12e5+4x+e5+4x2(3+x)12ddx[3+x]

By the Sum Rule, the derivative of 3+x with respect to x is ddx[3]+ddx[x].

4(3+x)12e5+4x+e5+4x2(3+x)12(ddx[3]+ddx[x])

Since 3 is constant with respect to x, the derivative of 3 with respect to x is 0.

4(3+x)12e5+4x+e5+4x2(3+x)12(0+ddx[x])

Add 0 and ddx[x].

4(3+x)12e5+4x+e5+4x2(3+x)12ddx[x]

Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.

4(3+x)12e5+4x+e5+4x2(3+x)121

Multiply e5+4x2(3+x)12 by 11.

4(3+x)12e5+4x+e5+4x2(3+x)12

To write 4(3+x)12e5+4x as a fraction with a common denominator, multiply by 2(3+x)122(3+x)12.

4(3+x)12e5+4x2(3+x)122(3+x)12+e5+4x2(3+x)12

Combine 4(3+x)12e5+4x and 2(3+x)122(3+x)12.

4(3+x)12e5+4x(2(3+x)12)2(3+x)12+e5+4x2(3+x)12

Combine the numerators over the common denominator.

4(3+x)12e5+4x(2(3+x)12)+e5+4x2(3+x)12

Multiply 2 by 4.

8(3+x)12e5+4x(3+x)12+e5+4x2(3+x)12

Multiply (3+x)12 by (3+x)12 by adding the exponents.

8(3+x)1e5+4x+e5+4x2(3+x)12

Simplify 8(3+x)1e5+4x.

8(3+x)e5+4x+e5+4x2(3+x)12

Simplify.

e5+4x(8x+25)2(3+x)12

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?