Hyperbolic functions are useful in solving differential equations. Show that

Adela Brown

Adela Brown

Answered question

2021-12-29

Hyperbolic functions are useful in solving differential equations. Show that the functions y=Asinh kx andy=Bcoshkx, where A, B, and k are constants, satisfy the equation yx)k2y(x)=0

Answer & Explanation

Bukvald5z

Bukvald5z

Beginner2021-12-30Added 33 answers

Step 1
Given,
y=Asinh(kx) andy=Bcosh(kx)
Where A,B and k are constants
Our Aim
To satisfy Equation
yx)k2y(x)=0
Step 2
For y=Asinh(kx)
y=A kcosh(kx)
yA k2sinh(kx)
Substitute values in
yx)k2y(x)=A k2sinh(kx)k2Asinh(kx)
yx)k2y(x)=0
Therefore, y=Asinh(kx) satisfies the equation
Step 3
For y=Bcosh(kx)
y=Bksinh(kx)
yBk2cosh(kx)
Substituting values in
yx)k2y(x)=Bk2cosh(kx)k2Bcosh(kx)
yx)k2y(x)=0
Therefore, y=Bcosh(kx) satiisfies the equation
Bukvald5z

Bukvald5z

Beginner2021-12-31Added 33 answers

y=Asinh(kx)
y=Acosh(kx)k=Akcosh(kx)
y=Aksinh(kx)k
y=Ak2sinh(kx)
Diff equation is yk2y=0 I believe that this is what it has to be, it must not be ky(x)
Plug in results :
Ak2sinh(kx)k2sinh(kx)=0
Ak2sinh(kx)Ak2sinh(kx)=0
0=0
Hence proved!
y=Bcosh(kx)
y=Bksinh(kx)
y=Bk2cosh(kx)
yk2y=0
Bk2cosh(kx)k2Bcosh(kx)=0
Bk2cosh(kx)Bk2cosh(kx)=0
0=0
Hence proved that y=Asinh(kx) and Bcosh(kx) are solutions
karton

karton

Expert2022-01-10Added 613 answers

Given,y=Asinh(kx) andy=Bcosh(kx)Where A, B and k are constantsOur AimTo satisfy Equationy(x)k2y(x)=0For y=Asinh(kx)y=A kcosh(kx)y=A k2sinh(kx)y(x)k2y(x)=A k2sinh(kx)k2Asinh(kx)y(x)k2y(x)=0y=Asinh(kx) satisfies the equationy=Bcosh(kx)y=Bksinh(kx)y=Bk2cosh(kx)y(x)k2y(x)=Bk2cosh(kx)k2Bcosh(kx)y(x)k2y(x)=0y=Bcosh(kx) satiisfies the equation

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?