y"+y=2x \sin x

osnomu3

osnomu3

Answered question

2021-12-27

yy=2xsinx

Answer & Explanation

jgardner33v4

jgardner33v4

Beginner2021-12-28Added 35 answers

The differential equation shown is
yy=2xsinx 
y=Aemx(A0) be the trail solution of the given differential equation 
The auxilary equation follows is 
m2+1=0 
ym2=1 
ym=1i 
cf=c1x+c2sinx 
PI=1D2+1(2xsinx) 
=21D2+1(xsinx) 
=2imarginary part of1D2+1x.eix 
=2.I.P.Oeix1(D+1)2+1x 
=2IPOeix1D2+2D+2x 
=2IPOeix12(1+D2+2D2)x 
=IPOeix(1+D2+2D2)1x 
=IPOeix(1D2+2D2+)x 
IPOeix(x22) 
=IPOeix(x1) 
=IPO(c3x+isinx)(x1) 
=xsinxsinx 
Therefore y(x)=cf+π 
=c1c3x+c2sinx+xsinxsinx 
=(c2+x1)sinx+c1c3x 
 

Neunassauk8

Neunassauk8

Beginner2021-12-29Added 30 answers

yy=2xsinx
y=(ax+b)cosx+(cx+d)sinx
y=acosx+csinx+(ax+b)(sinx)+(cx+d)cosx
y2asinx+2cosx(ax+b)cosx+(cx+d)(sinx)
yy=2asinx+2cosx
x turn is not including
our choice is not corvet
Take y=(ax2+bx+c)cosx+(bx2+ex+f)sinx
y=(2ax+b)cosv+(2dx+e)sinx+(ax2+bx+c)(sinx)+(dx2+ex+f)(cosx)
y2acosx+2dsinx+(2ax+b)(sinx)+(2dx+e)cosx+(2ax+b)(sinx)+(2dx+e)cosx(ax2+bx+c)cosx(dx2+ex+f)cosx
yy=2xsinx
(2a+2dx+e+2dx+e)cosx+(2d2axb2axb)sinx=2xsinx
2a+4dx+2e=0d=0;a+e=0

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?