Detemine whether the equation given is a solution

Beryneingmk39

Beryneingmk39

Answered question

2022-03-22

Detemine whether the equation given is a solution to the corresponding differential equation.
y=C1e1.25t+c2e5.5t16;
y+274y+558y=110

Answer & Explanation

memantangti17

memantangti17

Beginner2022-03-23Added 13 answers

Given:
y +274y+558y=110
A second order linear, non−homogeneous ODE has the form of
ay +by+cy=g(x)
The general solution to a(x)y +b(x)y+c(x)y=g(x) can be written as
y=yh+yp
yh is the solution to the homogeneous ODE a(x)y +b(x)y+c(x)y=0
yp, the particular solution, is any function that satisfies the non−homogeneous equation
Find yh by solving the y +274y+558y=0
For an equation ay +by+cy=0, assume a solution of the form eγt
Rewrite the equation with y=eγt
(eγt) +274(eγt)+558eγt=0
Taking common out:
eγt(γ2+27γ4+558)=0
γ2+27γ4+558=0
8γ2+55γ+55=0
For a quadratic equation of the form ax2+bx+c=0 the solutions are
x1,2=b±b24ac2a
For a=8, b=54, c=55:
γ1,2=54±542485528
γ1,2=54±2916176016
γ1,2=54±115616
γ1,2=54±3416
γ1,2=54+3416, 543416
The solution to the quadratic equation are:
γ=54, γ=112
For two real roots γ1qγ2, the general solution takes the form:
y=c1eγ1t+c2eγ2t
yh=c1e34t+c2e112t
yh=c1e1.25t+c2e5.5t
Now, find yp that satisfies y +274y+558=110
yp=16
The general solution y=yh+yp is:
y=c1e1.25t+c2e5.5t16
So, y=c1e1.25t+c2e5.5t16 is a solution of differential equation 
y''+274y'+558y=-110

Jeffrey Jordon

Jeffrey Jordon

Expert2022-03-31Added 2605 answers

Answer is given below (on video)

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?