Calculate the iterated integral∫01∫014xyx2+y2dxdy

Pedro Ramirez

Pedro Ramirez

Answered question

2022-04-07

Calculate the iterated integral

01014xyx2+y2dxdy

Answer & Explanation

nick1337

nick1337

Expert2022-06-08Added 777 answers

01014xyx2+y2dxdy

Evaluate 014xyx2+y2dx.

Since 4y is constant with respect to x, move 4y out of the integral.

014y01xx2+y2dxdy

Let u1=x2+y2. Then du1=2xdx, so 12du1=xdx. Rewrite using u1 and du1.

014yy21+y2u112du1dy

Combine u1 and 12.

014yy21+y2u12du1dy

Since 12 is constant with respect to u1, move 12 out of the integral.

014y(12y21+y2u1du1)dy

Simplify the expression.

012yy21+y2u112du1dy

By the Power Rule, the integral of u112 with respect to u1 is 23u132.

012y23u132]y21+y2dy

Combine 23 and u132.

012y2u1323]y21+y2dy

Substitute and simplify.

0123y(2(1+y2)32-2y3)dy

Evaluate 0123y(2(1+y2)32-2y3)dy.

Combine 2323 and yy.

012y3(2(1+y2)32-2y3)dy

Let u2=1+y2. Then du2=2ydy, so 12ydu2=dy. Rewrite using u2 and du2.

1213(2u232-2u2-13)du2

Rewrite u2-13 as ((u2-1)3)12.

1213(2u232-2(u2-1)3)du2

Since 13 is constant with respect to u2, move 13 out of the integral.

13122u232-2(u2-1)3du2

Split the single integral into multiple integrals.

13(122u232du2+12-2(u2-1)3du2)

Since 2 is constant with respect to u2, move 2 out of the integral.

13(212u232du2+12-2(u2-1)3du2)

By the Power Rule, the integral of u232 with respect to 2u2 is 25u252.

13(2(25u252]12)+12-2(u2-1)3du2)

Combine 25 and u252.

13(2(2u2525]12)+12-2(u2-1)3du2)

Since -2 is constant with respect to u2, move -2 out of the integral.

13(2(2u2525]12)-212(u2-1)3du2)

Let u3=u2-1. Then du3=du2. Rewrite using u3 and du3.

13(2(2u2525]12)-201u33du3)

Use axn=axn to rewrite u33 as u332.

13(2(2u2525]12)-201u332du3)

By the Power Rule, the integral of u332 with respect to u3 is 25u352.

13(2(2u2525]12)-2(25u352]01))

Combine 25 and u352.

13(2(2u2525]12)-2(2u3525]01))

Substitute and simplify.

2(272-2)-415

Simplify the numerator.

292-815

The result can be shown in multiple forms.

Exact Form:

292-815

Decimal Form:

0.97516113

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?