Find the characteristic equation and the eigenvalues (and corresponding eigenvectors)

eliaskidszs

eliaskidszs

Answered question

2021-12-13

Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix.
[223032012]
a) The characteristic equation
λ37λ2+14λ8=0
b) The eigenvalues
(λ1, λ2, λ3)=(1, 2, 4)
The corresponding eigenvectors
x1=7, 1, 1?
x2=1, 0, 0
x3=13, 4, 2?

Answer & Explanation

Deufemiak7

Deufemiak7

Beginner2021-12-14Added 34 answers

Step 1
Explanation:
Given that,
[223032012]
a. Characteritic equation for given matrix
λ37λ2+14λ8=0
b. Eigenvalues are:
λ37λ2+14λ8=0
(λ1)(λ2)(λ4)=0
λ1=0
λ=1
λ2=0
λ=2
λ4=0
λ=4
λ1=1
λ2=2
λ3=4
Step 2
c) Find the eigenvectors
To find the eigenvectors, we will set up the equation:
Solve (AλI)
Aλ1I=[223032012]1[100010001]
A1I=[223032012][100010001]=[123022011]
Now reduce this matrix using row echelon form.
Reduce [123022011]
R3R3+R22
=[123022000]
R2R22
=[123011000]
R1R1+2R2
=[101011000]
(A!I)[xyz]=[101011000][xyz]=0
x+z=0x=z

Mollie Nash

Mollie Nash

Beginner2021-12-15Added 33 answers

A=[223032012]
|AλI|=0 implies
[2λ2303λ2012λ]=0(2λ)[(3λ)(2λ)2]=0
(2λ)[65λ+λ22]=0(2λ)(λ25λ+4)=0
(2λ)(1λ)(4λ)=0
or λ3+7λ214λ+8=0
or λ37λ2+14λ8=0
The eisen valus are λ=1, 2, 4 (λ1 λ2 λ3)=(1, 2, 4)
i) for λ=1, (AI)x=0
[123022011][xy2]=[000]y=z
22y+z2=0x=z
x1=[111]
ii) λ=2, (A2I)x=0
[023012010][xyz]=[00]y=0z=0x=k
x2=[1  0  0]T
iii) for λ=4, (A4I)x=0
[223012012][xyz]=[000]
y=2

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Linear algebra

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?