Stones are thrown horizontally with the same velocity from the tops of

Brock Brown

Brock Brown

Answered question

2022-01-07

Stones are thrown horizontally with the same velocity from the tops of two different buildings. One stone lands twice as far from the base of the building from which it was thrown as does the other stone. Find the ratio of the height of the taller building to the height of the shorter building.

Answer & Explanation

Bukvald5z

Bukvald5z

Beginner2022-01-08Added 33 answers

Step 1
By neglecting the resistance of the air, both stones will experience an acceleration only on the vertical axis which is the acceleration of the gravity, and the velocity in the horizontal axis is constant. Therefore, the following equation describes the motion of the stones in the vertical axis:
y=v0yt+12at2
since both stones are thrown horizontally, the vertical initial velocity is zero, so:
y=12at2
the first stone will make a vertical displacement magnitude equals the height of the first building H1 but with negative sign, during a time of flight t1, so:
H1=12at12
the second stone will make a verticaldisplacement magnitude equals the height of the second building H2 but with negative sign, during a time of flight t2, so:
H2=12at22
Step 2
The distance in the horizontal axis is given by:
x=v0xt
t=xv0x (1)
Both stones are thrown horizontally with the same velocity (say vx), so for the first stone this equation will become:
t1=x1vx
and for the second stone is,
t2=x2vx
hence, the height of the two building will become:
H1=12at12 H2=12at22
H1=12a(x1vx)2 H2=12a(x2vx)2
but the first stone lands twice as far from the base of the base of the building which means x1=2x2, so:
H1=12a(2x2vx)2 H2=12a(x2vx)2
clearly H1>H2, so the ratio, so the height of the taller building to the height of the shorter building is:
H1H2=12a(2x2vx)212a(x2vx)2

Papilys3q

Papilys3q

Beginner2022-01-09Added 34 answers

Distance from the base of the building to place where stone landing:
l=vt
where v is velocity, t is time.
Time can be found from:
h=gt22
where h is height of the building
t=2hg
Therefore:
l1=v2h1g,l2=v2h1g
l1l2=h1h2=2
h1h2=4
Answer: 4

karton

karton

Expert2022-01-11Added 613 answers

Answer:
4 times taller
Explanation:
The horizontal distance travelled by a projectile is
d=vxt(1)
where vx is the horizontal velocity (which is constant) and t is the total time of the fall.
The total time of the fall can be found by analyzing the vertical motion of the projectile: the vertical position at time t is given by
y=h12gt2
where h is the initial height, g=9.8m/s2 is the acceleration due to gravity, t is the time.
The total time of the fall is the time t at which y=0 (the projectile reaches the ground), so
0=h12gt2
t=2hg
Substituting into (1),
d=vx2hg
This can be re-arranged as
d2=vx2h2g
h=2gd2vx2
so we see that the initial height depends on the square of the horizontal distance travelled, d.
In this problem, one stands lands twice as far as the other stone does, so
d' = 2d
this means that the height of the taller builing is h=2g(2d)2vx2=4(2gd2vx2)=4h
so the taller building is 4 times taller than the smaller one.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?