Solve System of Differential Equations with Expert Help

Recent questions in Differential Equations
Differential EquationsAnswered question
Jonathan Miles Jonathan Miles 2022-07-01

I am trying to solve a first order differential equation with the condition that g ( y ) = 0 if y = 0:
a g ( c y ) + b g ( e y ) = α (1) g ( 0 ) = 0 ,
where parameters a,b,c,e are real nonzero constants; α is a complex constant; function g ( y ) : R C is a function mapping from real number y to a complex number. The goal is to solve for function g ( ). This is what I have done. Solve this differential equation by integrating with respect to y:
a c g ( c y ) + b e g ( e y ) = α y + β ,
where β is another complex constant. Plugging in y=0 and using the fact that g(0)=0, we have β = 0. Therefore, we have
a c g ( c y ) + b e g ( e y ) = α y .
The background of this problem is Cauchy functional equation, so my conjecture is one solution could be g ( y ) = γ y. Plugging in g ( y ) = γ y, I get γ = α a + b , which implies that one solution is g ( y ) = α a + b y. Then, I move on to show uniqueness. I define a vector-valued function h ( h 1 , h 2 ) T such that
h 1 ( y ) = a c g 1 ( c y ) + b e g 1 ( e y ) h 2 ( y ) = a c g 2 ( c y ) + b e g 2 ( e y ) ,
where g ( y ) g 1 ( y ) + i g 2 ( y ). Then, I rewrite this differential equation as
h ( y ) = α (2) h ( 0 ) = 0 ,
where α ( α 1 , i α 2 ) T . By the uniqueness theorem of first order differential equation, solution h(y) is unique. I have two questions. First, I think equation (1) and (2) should be equivalent. However, it seems that equation (1) can imply equation (2) but equation (2) may not imply equation (1). This is because h(0)=0 may imply either g 1 ( 0 ) = 0 , g 2 ( 0 ) = 0 or a c + b e = 0. Second, I have only proved that h(y) is unique. How should I proceed to show g(y) is also unique.

Speaking of differential equations, these are used not only by those students majoring in Physics because solving differential equations is also quite common in Statistics and Financial Studies. Explore the list of questions and examples of equations to get a basic idea of how it is done.

These answers below are meant to provide you with the starting points as you work with your differential equations. If you need specific help or cannot understand the rules behind the answers that are presented below, start with a simple equation and learn with the provided solutions..