If \cos\alpha=\cos\beta\cos\phi=\cos\gamma\cos\theta and \sin\alpha=2\sin\frac{\phi}{2}\sin\frac{\theta}{2} then prove that \tan\frac{\alpha}{2}=\pm\tan\frac{\beta}{2}\tan\frac{\gamma}{2}

Perla Galloway

Perla Galloway

Answered question

2022-04-21

If cosα=cosβcosϕ=cosγcosθ
and
sinα=2sinϕ2sinθ2
then prove that
tanα2=±tanβ2tanγ2

Answer & Explanation

Killian Curry

Killian Curry

Beginner2022-04-22Added 18 answers

cosαcosβ=cosϕ
=12sin2ϕ2
2sin2ϕ2=1cosαcosβ
and(in the similar fashion)
2sin2θ2=1cosαcosγ
sin2α=2sin2ϕ22sin2θ2
=(1cosαcosβ)(1cosαcosγ)
cosβcosγ(1cos2α)=(cosβcosα)(cosγcosα)
cos2αcosβcosγ=cosαcosβcosαcosγ+cos2α
Assuming cosα0
cosαcosβcosγ=cosβcosγ+cosα
cosα(1+cosβcosγ)=cosβ+cosγ
cosβ+cosγ1+cosβcosγ=cosα1
Apply Componendo and Dividendo and use
cos2x=1tan2x1+tan2x

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?