Find Answers
High School
Calculus and Analysis
Algebra
Geometry
Statistics and Probability
Math Word Problem
Other
Physics
Math World Problem
College
Algebra
Statistics and Probability
Calculus and Analysis
Advanced Math
Physics
Get Study Tools
Math Solver
Ask Question
Login
Sign Up
High School
Algebra
Algebra I
Functions
All
Answered
Unanswered
Functions in Algebra Examples
Recent questions in Functions
Algebra I
Answered question
Jacoby Erickson
2022-10-31
Find all functions
f
:
R
→
R
such that
x
2
⋅
f
(
x
)
+
f
(
1
−
x
)
=
2
x
−
x
4
∀
x
∈
R
My solution:
Replace x by
(
1
−
x
)
and by eliminating
f
(
1
−
x
)
I obtained
f
(
x
)
=
1
−
x
2
Algebra I
Answered question
pezgirl79u
2022-10-31
Given
f
(
x
y
)
=
f
(
x
+
y
)
and
f
(
11
)
=
11
, what is
f
(
49
)
?
Algebra I
Answered question
gasavasiv
2022-10-30
If
x
,
y
,
α
>
0
and
x
>
y
, then
x
α
>
y
α
I know it's obvious when we use differnetation rule for exponential function, but I'm not allowed to. Is there any way I can show it clearly?
Algebra I
Answered question
Jairo Decker
2022-10-30
Let
a
,
b
∈
R
with a<b and
f
:
[
a
,
b
]
→
[
a
,
b
]
be a continuous function. If
a
0
,
a
1
,
.
.
.
,
a
n
∈
R
and
a
0
+
a
1
+
a
2
+
.
.
.
+
a
n
≠
0
and
a
0
x
+
a
1
f
(
x
)
+
a
2
f
2
(
x
)
+
.
.
.
+
a
n
f
n
(
x
)
=
0
,
∀
x
∈
[
a
,
b
]
, prove that
a
⋅
b
<
0
Algebra I
Answered question
Rene Nicholson
2022-10-30
Prove:
f
(
x
+
g
(
x
)
)
−
f
(
g
(
x
)
)
x
→
f
′
(
0
)
as x approaches 0
Algebra I
Answered question
klastiesym
2022-10-29
Can we say
f
(
x
)
=
x
ln
(
x
2
)
has a removable discontinuity at
x
=
0
?
Algebra I
Answered question
Danika Mckay
2022-10-29
f
:
R
→
R
be function satisfying
f
(
x
+
y
)
=
f
(
x
)
.
f
(
y
)
for all
x
,
y
∈
R
and
l
i
m
x
→
0
f
(
x
)
=
1
then show that
f
(
r
x
)
=
(
f
(
x
)
)
r
for all
r
∈
Q
Algebra I
Answered question
hogwartsxhoe5t
2022-10-29
Find a point of discontinuity, if any
f
(
x
)
=
2
x
2
+
2
x
−
60
x
2
−
x
−
20
Algebra I
Answered question
blackdivcp
2022-10-29
Find the interval(s) where the function is increasing and the interval(s) where it is decreasing.
f
(
x
)
=
9
x
e
x
Increasing:
a)
(
−
∞
,
−
1
)
b)
(
−
1
,
∞
)
c)
(
−
∞
,
0
)
d)
(
−
∞
,
∞
)
e)
(
0
,
∞
)
f) no interval
Algebra I
Answered question
Madilyn Quinn
2022-10-28
Use the binomial series to expand the function as a power series.
\frac{9}{(6+x)^3}
Algebra I
Answered question
Winston Todd
2022-10-27
Assume p is an even function and q is an odd function, given p,q lies on the entire real line, determine if
p
∘
q
is an even or odd function
Fundamentally,
Even function:
f
(
x
)
=
f
(
−
x
)
Odd function:
f
(
x
)
=
−
f
(
x
)
can I say that
p
∘
q
is an odd function because:
(
p
∘
q
)
(
x
)
=
p
(
q
(
−
x
)
)
=
p
(
−
q
(
x
)
)
=
−
(
p
∘
q
)
(
x
)
?
Algebra I
Answered question
ndevunidt
2022-10-26
If two periodic functions so that
X
=
X
(
t
)
and
Y
=
X
(
t
+
α
)
, with α unknown is there a way to extract
α
from
X
−
Y
?
Algebra I
Answered question
podvelkaj8
2022-10-26
Given that
f
(
x
)
=
4
x
−
x
2
for
x
≤
2
is invertible, find
f
−
1
(
x
)
Algebra I
Answered question
ormaybesaladqh
2022-10-25
Need to solve the following product:
∏
k
=
1
N
1
{
y
k
≥
1
}
Is there a way to simplify it or write it in a closed-form expression?
Algebra I
Answered question
Chaim Ferguson
2022-10-25
Can anyone invert
y
=
a
cos
(
x
)
+
b
sin
(
2
x
)
to give
x
=
f
(
y
)
?
Algebra I
Answered question
Jairo Decker
2022-10-25
Finding the range of
5
cos
x
−
2
sin
2
x
+
4
sin
x
−
3
6
|
cos
x
|
+
1
Algebra I
Answered question
Marley Meyers
2022-10-24
Let
f
(
x
)
=
x
+
4
x
+
6
Find
f
−
1
(
−
5
)
=
?
Algebra I
Answered question
cousinhaui
2022-10-24
Since every function can be divided in a even and a odd part:
f
e
(
x
)
=
f
(
x
)
+
f
(
−
x
)
2
f
o
(
x
)
=
f
(
x
)
−
f
(
−
x
)
2
f
(
x
)
=
f
e
(
x
)
+
f
o
(
x
)
How can I obtain the function by it's even part?
Algebra I
Answered question
robbbiehu
2022-10-22
Find the
lim
n
→
∞
n
2
+
1
+
n
(
n
4
+
1
)
1
/
4
−
n
Algebra I
Answered question
limfne2c
2022-10-22
Given
a
∈
R
, such that the two roots in
f
(
x
)
=
x
2
+
a
x
+
(
2
a
+
319
)
are both positive integers. Find a.
1
…
4
5
6
7
8
…
34
Dealing with function Math questions is never easy as these can be implemented virtually anywhere where Algebra is used. It means that starting with at least one function Math example from what has been provided below will help you. Of course, certain function Math problems will require more analysis and verbal explanations, yet these are also encountered as you look through the questions. Learn about the use of equations first! The functions Math problems are always based on the analytical part because the function Math equation always has only one answer for every unknown variable.
Algebra I
Sequences
Functions
Quadratic function and equation
Linear equations and graphs
Systems of equations
Exponential growth and decay
Irrational numbers
Piecewise-Defined Functions
Forms of linear equations
Exponents and radicals
Algebra foundations
Exponents and radicals
Polynomial graphs
Inequalities systems and graphs
Equations and inequalities