\cos^{-1} \frac{3}{\sqrt{10}}+\cos^{-1} \frac{2}{\sqrt5}=? Let \cos^{-1} \frac{3}{\sqrt{10}}=\alpha, \cos^{-1} \frac{2}{\sqrt5}=\beta then, \cos \alpha=\frac{3}{\sqrt{10}},

killjoy1990xb9

killjoy1990xb9

Answered question

2022-01-03

cos1310+cos125=?
Let cos1310=α,cos125=β then, cosα=310,cosβ=25
Therefore
cosα=32225=322cosβ

Answer & Explanation

sonorous9n

sonorous9n

Beginner2022-01-04Added 34 answers

Use trig identity:sin2θ+cos2θ=1
sinα=1cos2α=1(310)2=110 0απ2
sinβ=1cos2β=1(25)2=15 0βπ2
Now, use trig identity
cos(α+β)=cosαcosβsinαsinβ
cos(α+β)=3102511015=12
α+β=cos112=π4   (cos(α+β)[1,1])
cos1310+cos125=π4
Or alternatively use trig identity
sin(α+β)=sinαcosβ+cosαsinβ
sin(α+β)=11025+31015=12
α+β=sin112=π4   (sin(α+β)[1,1])
cos1310+cos125=π4
Kirsten Davis

Kirsten Davis

Beginner2022-01-05Added 27 answers

Hint : apply this formula:
cos1x+cos1y=cos1[xy(1x2)(1y2)]
Put x=210 and y=25
Vasquez

Vasquez

Expert2022-01-08Added 669 answers

Like Proof for the formula of sum of arcsine functions arcsinx+arcsiny
using cos(A+B) and the definition of principal values
cos1x+cos1y={cos1(xy(1x2)(1y2))  if  cos1x+cos1yπ2πcos1(xy(1x2)(1y2))  otherwise  
Now

cos1x+cos1yπwill happencos1xπcos1y=cos1(y)π2sin1xπ2sin1(y)sin1xsin1(y)xy

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?