Let \alpha=(1\ 7\ 3)(5\ 4\ 2\ 9) and \beta=(2\ 3)(7\

Mary Reyes

Mary Reyes

Answered question

2022-01-13

Let α=(1 7 3)(5 4 2 9)andβ=(2 3)(7 4)(5 1 8) be elements of S10. Then α2β1 is:
a) (1 2 7 9 4)(3 8 5)
b) (1 2 7 4 9)(3 5 8)
c) (1 2 7 9 4)(3 5 8)
d) (1 2 9 7 4)(3 5 8)

Answer & Explanation

mauricio0815sh

mauricio0815sh

Beginner2022-01-14Added 34 answers

Step 1
α=[123456789107972473951]
β=[1234567891083271745101]
[123456789107912473951]
α2[123456789103579231547]
β1[1234567891083271745101]
β1=[123456789105234847118]
α2β1[123456789103579231547]
×[123456789105234847118]
[1234579827813945]
α2β1(1 2 7 9 4)(3 8 5)
limacarp4

limacarp4

Beginner2022-01-15Added 39 answers

Step 1
α=(1 7 3)(5 4 2 9)
(α)2=(1 7 3)(5 4 2 9)×(1 7 3)(5 4 2 9)
that is
(1 3 7)(5 2)(4 9)
and beeta inverse will be
(3 2)(4 7)(8 1 5)
that is
(α)2×(β)1=(1 3 7)(5 2)(4 9)×(3 2)(4 7)(8 1 5)
=(1 2 7 9 4)(3 5 8)
so here option (b) is true
alenahelenash

alenahelenash

Expert2022-01-24Added 556 answers

Step 1 We have α=(1 7 3)(5 4 9 2) β=(2 3)(7 4)(5 1 8) Step 2 α2=(1 7 3)(5 4 9 2)(1 7 3)(5 4 9 2) =(1 3 7)(2 4)(5 9) β=(2 3)(7 4)(5 1 8) Inwerse of β can be calculated by rewersing elements, β1=(8 1 5)(4 7)(3 2) So, α2β1=(1 3 7)(2 4)(5 9)(8 1 5)(4|7)(3 2) =(1 9 5 8 3 4)(2 7) Noneofthegivenoptionsiscorrect.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?