Aurora Holmes

2023-02-22

The age of the father is twice the sum of the ages of his two children. After 20 years, his age will be equal to the sum of the ages of his children. Find the age of the father.

Zack Dawson

Beginner2023-02-23Added 8 answers

Assume that the father is x years old and that the combined ages of the two children is y years.

As per the question,

x=2y.....(1)

After 20 years,

x+20=y+20+20

⇒ x+20=y+40

⇒ x=y+20.....(2)

Equating (1) & (2),

y = 20

Substituting y = 20 in equation (1), we obtain

x = 40

Therefore, the father's age is 40 years.

As per the question,

x=2y.....(1)

After 20 years,

x+20=y+20+20

⇒ x+20=y+40

⇒ x=y+20.....(2)

Equating (1) & (2),

y = 20

Substituting y = 20 in equation (1), we obtain

x = 40

Therefore, the father's age is 40 years.

$\frac{20b}{{\left(4{b}^{3}\right)}^{3}}$

Which operation could we perform in order to find the number of milliseconds in a year??

$60\cdot 60\cdot 24\cdot 7\cdot 365$ $1000\cdot 60\cdot 60\cdot 24\cdot 365$ $24\cdot 60\cdot 100\cdot 7\cdot 52$ $1000\cdot 60\cdot 24\cdot 7\cdot 52?$ Tell about the meaning of Sxx and Sxy in simple linear regression,, especially the meaning of those formulas

Is the number 7356 divisible by 12? Also find the remainder.

A) No

B) 0

C) Yes

D) 6What is a positive integer?

Determine the value of k if the remainder is 3 given $({x}^{3}+k{x}^{2}+x+5)\xf7(x+2)$

Is $41$ a prime number?

What is the square root of $98$?

Is the sum of two prime numbers is always even?

149600000000 is equal to

A)$1.496\times {10}^{11}$

B)$1.496\times {10}^{10}$

C)$1.496\times {10}^{12}$

D)$1.496\times {10}^{8}$Find the value of$\mathrm{log}1$ to the base $3$ ?

What is the square root of 3 divided by 2 .

write $\sqrt[5]{{\left(7x\right)}^{4}}$ as an equivalent expression using a fractional exponent.

simplify $\sqrt{125n}$

What is the square root of $\frac{144}{169}$