grelaratzuvy

2023-03-11

What is the square root of 32 over 4, expressed in the simplest radical form?

kizintefevd3

Beginner2023-03-12Added 4 answers

Determine the square root of 32 over 4, expressed in the simplest radical form.

When a number is multiplied by itself, its square root returns the original number.

Find the prime factors of $\frac{32}{4}$:

$\frac{32}{4}=\frac{2\times 4\times 4}{2\times 2}$

Take square root from both sides of the above equation:

$\sqrt{\frac{32}{4}}=\sqrt{\frac{2\times 4\times 4}{2\times 2}}\phantom{\rule{0ex}{0ex}}\Rightarrow \sqrt{\frac{32}{4}}=\frac{\sqrt{2\times 4\times 4}}{\sqrt{2\times 2}}\phantom{\rule{0ex}{0ex}}\Rightarrow \sqrt{\frac{32}{4}}=\frac{4}{2}\sqrt{2}\phantom{\rule{0ex}{0ex}}\Rightarrow \sqrt{\frac{32}{4}}=2\sqrt{2}$

Thus, the square root of 32 over 4, expressed in the simplest radical form is $2\sqrt{2}$

When a number is multiplied by itself, its square root returns the original number.

Find the prime factors of $\frac{32}{4}$:

$\frac{32}{4}=\frac{2\times 4\times 4}{2\times 2}$

Take square root from both sides of the above equation:

$\sqrt{\frac{32}{4}}=\sqrt{\frac{2\times 4\times 4}{2\times 2}}\phantom{\rule{0ex}{0ex}}\Rightarrow \sqrt{\frac{32}{4}}=\frac{\sqrt{2\times 4\times 4}}{\sqrt{2\times 2}}\phantom{\rule{0ex}{0ex}}\Rightarrow \sqrt{\frac{32}{4}}=\frac{4}{2}\sqrt{2}\phantom{\rule{0ex}{0ex}}\Rightarrow \sqrt{\frac{32}{4}}=2\sqrt{2}$

Thus, the square root of 32 over 4, expressed in the simplest radical form is $2\sqrt{2}$

$\frac{20b}{{\left(4{b}^{3}\right)}^{3}}$

Which operation could we perform in order to find the number of milliseconds in a year??

$60\cdot 60\cdot 24\cdot 7\cdot 365$ $1000\cdot 60\cdot 60\cdot 24\cdot 365$ $24\cdot 60\cdot 100\cdot 7\cdot 52$ $1000\cdot 60\cdot 24\cdot 7\cdot 52?$ Tell about the meaning of Sxx and Sxy in simple linear regression,, especially the meaning of those formulas

Is the number 7356 divisible by 12? Also find the remainder.

A) No

B) 0

C) Yes

D) 6What is a positive integer?

Determine the value of k if the remainder is 3 given $({x}^{3}+k{x}^{2}+x+5)\xf7(x+2)$

Is $41$ a prime number?

What is the square root of $98$?

Is the sum of two prime numbers is always even?

149600000000 is equal to

A)$1.496\times {10}^{11}$

B)$1.496\times {10}^{10}$

C)$1.496\times {10}^{12}$

D)$1.496\times {10}^{8}$Find the value of$\mathrm{log}1$ to the base $3$ ?

What is the square root of 3 divided by 2 .

write $\sqrt[5]{{\left(7x\right)}^{4}}$ as an equivalent expression using a fractional exponent.

simplify $\sqrt{125n}$

What is the square root of $\frac{144}{169}$