To find: the operation performed in the polynomials 3x+1 and x-2 so that the final answer is 2x+3

emancipezN

emancipezN

Answered question

2021-08-08

To find:
The operation performed in the polynomials 3x+1 and x2 so that the final answer is 2x+3.

Answer & Explanation

SabadisO

SabadisO

Skilled2021-08-09Added 108 answers

Approach:
In algebra, an expression with only the term is termed as monomial. It can be number or a variable or a product of both.
When two or more monomials are combined using operations like addition and/or subtraction, the resultant expression is termed a polynomial.
To perform subtraction operation between two poltnomials, we need to use associative and commutative properties to group and combine like terms.
Also, subtracting y from x is equivalent in adding -y with x.
Given Information:
Polynomials: 3x+1 and x2
Final answer: 2x+3
Calculation:
(3x+1)(x2) is equivalent to (3x+1)+(x+2)
To subtract the polynomial x2 from 3x+1, group and combine the like terms in the polynomials using the indicated operation.
(3x+1)+(x+2)=(3xx)+(1+2)
=(2x)+(3)
=2x+3
Final statement:
The arithmetic operation "subtraction" is performed in the polynomials 3x+1 and x2.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?