Find and solve the exact value of each of the following under the given conditions tan alpha = -frac{7}{24}, alpha lies in quadrant 2, cos beta = frac{3}{4}, beta lies in quadrant 1 a. sin(alpha + beta) b. cos(alpha + beta) c. tan (alpha + beta)

Lewis Harvey

Lewis Harvey

Answered question

2020-11-11

Find and solve the exact value of each of the following under the given conditions tan α= 724, α lies in quadrant 2,
cos β=34, β lies in quadrant 1
a. sin(α + β)
b. cos(α + β)
c. tan(α + β)

Answer & Explanation

hesgidiauE

hesgidiauE

Skilled2020-11-12Added 106 answers

Given:
tan α= 724, α lies in quadrant 2
cos β=34, β lies in quadrant 1
Thus, using trigonometric ratio
sin α=725
cos α= 2425
sin β=74
tan β=sqrt73
a) sin(α + β)=sin α cos β + cos α sin β
=(725 × 34) + (2425 × 74)
=21100  247100
sin(α + β)=21  247100
b) cos(α + β)=cos α cos β  sin α sin β
=(2425 × 34)  (725 × 74)
= 72100  77100
cos(α + β)=72  77100
c) tan(α + β)=tan α + tan β1  tan α tan β
=724 + 731  (724)(73)
=7 + 87241 + 7772
=21 + 24772 + 77
Multiply and divide by conjugate of denominator,
tan(α + β)=21 + 24772 + 77 × 72  7772  77
tan(α + β)=2688 + 187574841

Jeffrey Jordon

Jeffrey Jordon

Expert2021-11-03Added 2605 answers

Answer is given below (on video)

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?