Russell Gillen

2021-12-16

Factor the quadratic polynomials.

${x}^{2}-4x-12$

MoxboasteBots5h

Beginner2021-12-17Added 35 answers

The given quadratic polynomial is ${x}^{2}-4x-12$ .

It is factored as follows.

${x}^{2}-4x-12={x}^{2}-6x+2x-12$

=x(x-6)+2(x-6)

=(x+2)(x-6)

It is factored as follows.

=x(x-6)+2(x-6)

=(x+2)(x-6)

Joseph Fair

Beginner2021-12-18Added 34 answers

The given equation is:

${x}^{2}-4x-12$

$\Rightarrow {x}^{2}-4x=12$

Thus,

${x}^{2}-4x=12$

$\Rightarrow {x}^{2}-4x-12=0$

The product of the second degree term and the constant is$-12{x}^{2}$ . Factors of $-12{x}^{2}$ that sum to -4x are -6x and 2x. Thus,

Factorizing which we get,

${x}^{2}-4x-12=0$

$\Rightarrow {x}^{2}-6x+2x-12=0$

$\Rightarrow x(x-6)+2(x-6)=0$

$\Rightarrow (x-6)(x+2)=0$

The required values of x are 6 and -2.

Thus,

The product of the second degree term and the constant is

Factorizing which we get,

The required values of x are 6 and -2.

$\frac{20b}{{\left(4{b}^{3}\right)}^{3}}$

Which operation could we perform in order to find the number of milliseconds in a year??

$60\cdot 60\cdot 24\cdot 7\cdot 365$ $1000\cdot 60\cdot 60\cdot 24\cdot 365$ $24\cdot 60\cdot 100\cdot 7\cdot 52$ $1000\cdot 60\cdot 24\cdot 7\cdot 52?$ Tell about the meaning of Sxx and Sxy in simple linear regression,, especially the meaning of those formulas

Is the number 7356 divisible by 12? Also find the remainder.

A) No

B) 0

C) Yes

D) 6What is a positive integer?

Determine the value of k if the remainder is 3 given $({x}^{3}+k{x}^{2}+x+5)\xf7(x+2)$

Is $41$ a prime number?

What is the square root of $98$?

Is the sum of two prime numbers is always even?

149600000000 is equal to

A)$1.496\times {10}^{11}$

B)$1.496\times {10}^{10}$

C)$1.496\times {10}^{12}$

D)$1.496\times {10}^{8}$Find the value of$\mathrm{log}1$ to the base $3$ ?

What is the square root of 3 divided by 2 .

write $\sqrt[5]{{\left(7x\right)}^{4}}$ as an equivalent expression using a fractional exponent.

simplify $\sqrt{125n}$

What is the square root of $\frac{144}{169}$