Aubrey Hendricks

2022-01-28

How do you find the degree of 4y-5xz?

seibesitoeu

Beginner2022-01-29Added 12 answers

Explanation:

The degree of an expression the the largest degree of any of its terms.

The degree of a term is the sum of the exponents of the variables in that term.

$4y=4{y}^{1}$ has a degree of 1

$5xz=5{x}^{1}{z}^{1}$ has a degree of (1+1)=2

(5xz) has a higher degree than (4y)

Therefore the degree of the expression is the degree of (5xz), namely 2

Result:

4y-5xz has degree 2

The degree of an expression the the largest degree of any of its terms.

The degree of a term is the sum of the exponents of the variables in that term.

(5xz) has a higher degree than (4y)

Therefore the degree of the expression is the degree of (5xz), namely 2

Result:

4y-5xz has degree 2

$\frac{20b}{{\left(4{b}^{3}\right)}^{3}}$

Which operation could we perform in order to find the number of milliseconds in a year??

$60\cdot 60\cdot 24\cdot 7\cdot 365$ $1000\cdot 60\cdot 60\cdot 24\cdot 365$ $24\cdot 60\cdot 100\cdot 7\cdot 52$ $1000\cdot 60\cdot 24\cdot 7\cdot 52?$ Tell about the meaning of Sxx and Sxy in simple linear regression,, especially the meaning of those formulas

Is the number 7356 divisible by 12? Also find the remainder.

A) No

B) 0

C) Yes

D) 6What is a positive integer?

Determine the value of k if the remainder is 3 given $({x}^{3}+k{x}^{2}+x+5)\xf7(x+2)$

Is $41$ a prime number?

What is the square root of $98$?

Is the sum of two prime numbers is always even?

149600000000 is equal to

A)$1.496\times {10}^{11}$

B)$1.496\times {10}^{10}$

C)$1.496\times {10}^{12}$

D)$1.496\times {10}^{8}$Find the value of$\mathrm{log}1$ to the base $3$ ?

What is the square root of 3 divided by 2 .

write $\sqrt[5]{{\left(7x\right)}^{4}}$ as an equivalent expression using a fractional exponent.

simplify $\sqrt{125n}$

What is the square root of $\frac{144}{169}$