Find the sum of a given arithmetic sequence: sum n=1 100 (6 - 12 n)

allhvasstH

allhvasstH

Answered question

2021-01-27

Find the sum of a given arithmetic sequence:
 n=1 100 (6  12 n)

Answer & Explanation

d2saint0

d2saint0

Skilled2021-01-28Added 89 answers

Formula used:
a)  k=1 nk=n 2 (n + 1)
b)  k=1 n c=cn
Calculation:
In order to find the sum of an arithmetic sequence, you need
S n= n=1 100 (6  12n)
Write  n=1 100 (6  12n) as follows,
 n=1 100 (6  12n)= n=1 100 6  12  n=1 100 n
Now to find  n=1 100 6,
Substitute the values of n in equation (b).
We get,
 n=1 100 6
=6 (100)
=600
Now to find the 12  n=1 100 n
Substitute the values of n in equation (a).
We get,
12  n=1 100 n
=12 (100(100 + 1)2)
=(100 × 101 4)
=2525
Then,
 n=1 100 6  12  n=1 100 n=600  2525
= 1925
Hence
 n=1 100(6  12n) = 1925
Jeffrey Jordon

Jeffrey Jordon

Expert2022-01-15Added 2605 answers

Answer is given below (on video)

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?