Find all the critical points of the function f(x) = 5x^{26} + 12x^{5} - 60x^{4} + 56. Use the First and/or Second Derivative Test to determine whether

Nann

Nann

Answered question

2021-01-08

Find all the critical points of the function f(x)=5x26 + 12x5  60x4 + 56. Use the First and/or Second Derivative Test to determine whether each critical point is a local maximum, a local minimum, or neither. You may use either test, or both, but you must show your use of the test(s). You do not need to identify any global extrema.

Answer & Explanation

sweererlirumeX

sweererlirumeX

Skilled2021-01-09Added 91 answers

Step 1
Consider the given function as f(x)=5x6 + 12x5  60x4 + 56.
Note that the domain of the polynomial function f(x)=5x6 + 12x5  60x4 + 56 is (, ).
To identify the critical points, we have to solve the equation f(x)=0 as follows.
f(x)=5x6 + 12x5  60x4 + 56
 f(x)=5 × 6x5 + 12 × 5x4  60 × 4x3
 f(x)=30x5 + 60x4  240x3
Therefore,
f(x)=0
 30x5 + 60x4  240x3=0
 30x3(x2 + 2x  8)=0
 x3=0, x2 + 2x  8=0
 x=0, (x + 4)(x  2)=0
 x=0, x= 4, x=2
Hence, the function f(x)=5x6 + 12x5  60x4 + 56 has critical points at
x= 4, x=0 and x=2.
To get the y coordinate of the critical points, evaluate the function value at x= 4, x=0 and x=2.
When x= 4, the value:
f(4)=5(4)6 + 12(4)5  60(4)4 + 56= 7112.
When x=0, the value:
f(0)=5(0)6 + 12(0)5  60(0)4 + 56=56
When x=2, the value:
f(2)=5(2)6 + 12(2)5  60(2)4 + 56= 200.
Thus, the critical points of the function f(x)=5x6 + 12x5  60x4 + 56 are (4, 7112), (0, 56) and(2, 200).
Step 2
To identify whether the each of the above critical point is a local maximum, a local minimum, or neither, we use the first derivative test.
Split the domain (, ) using the critical points:
x= 4, x=0 and x=2 as (, 4), (4, 0), (0, 2) and(2, ).
Check the sign of the first derivative

Do you have a similar question?

Recalculate according to your conditions!

New Questions in College Statistics

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?