Why does one counterexample disprove a conjecture? Can't a conjecture be correct about most solutio

ureji1c8r1

ureji1c8r1

Answered question

2022-05-08

Why does one counterexample disprove a conjecture?
Can't a conjecture be correct about most solutions except maybe a family of solutions?
For example, a few centuries ago it was widely believed that 2 2 n + 1 is a prime number for any n . For n=0 we get 3 , for n=1 we get 5 , for n=2 we get 17 , for n=3 we get 257 , but for n=4 it was too difficult to find if this was a prime, until Euler was able to find a factor of it. It seems like this conjecture stopped after that.
But what if this conjecture isn't true only when n satisfies a certain equation, or when n is a power of 2 4 , or something like that? Did anybody bother to check? I am not asking about this conjecture specifically, but as to why we consider one counterexample as proof that a conjecture is totally wrong.P.S. Andre Nicolas pointed out that Euler found a factor when n=5, not 4 .

Answer & Explanation

Lara Alvarez

Lara Alvarez

Beginner2022-05-09Added 14 answers

This is because, in general, a conjecture is typically worded "Such-and-such is true for all values of [some variable]." So, a single counter-example disproves the "for all" part of a conjecture.
However, if someone refined the conjecture to "Such-and-such is true for all values of [some variable] except those of the form [something]." Then, this revised conjecture must be examined again and then can be shown true or false (or undecidable--I think).
For many problems, finding one counter-example makes the conjecture not interesting anymore; for others, it is worthwhile to check the revised conjecture. It just depends on the problem.

Do you have a similar question?

Recalculate according to your conditions!

New Questions in College Statistics

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?