Find general solution of the following differential equation dy/dx=(2y^2+x^2e^(-(y/x)^2))/(2xy)

UkusakazaL

UkusakazaL

Answered question

2021-02-21

Find general solution of the following differential equation dy/dx=(2y2+x2e((y/x)2))/(2xy)

Answer & Explanation

dieseisB

dieseisB

Skilled2021-02-22Added 85 answers

y=vx=>y/x=v
dy/dx=v+x(dv)/dx
v+x(dv)/dx=(2(vx)2+x2e((v)2))/(2x(vx))
v+x(dv)/dx=(2v2x2+x2e((v)2))/(2vx2)
v+x(dv)/dx=(x2(2v2+e((v)2)))/(2vx2) (take x2 as common factor from numerator)
v+x(dv)/dx=(2v2+e((v)2))/(2v) (divide x2/x2=1)
Substract v from both sides and further simplify it
v+x(dv)/dxv=(2v2+e((v)2))/(2v)v
x(dv)/dx=(2v2e((v)2)2v2)/(2v)
x(dv)/dx=e((v)2)/(2x)
(2v)/e((v)2)dv=dx/x
Integrate both sides
2vev2dv=dx/x+c
Substitute v2=t
=>2vdv=dt
Hence, etdt=dx/x+c
et=lnx+c
t=ln(lnx+c) (use property ex=y=>x=lny)
Substitute back t=v2
v2=ln(lnx+c)
Substitute back v=y/x
(y/x)2=ln(lnx+c)
y2/x=ln(lnx+c)
y2=x2ln(lnx+c)
y=+x2ln(lnx+c)
y=±xln(lnx+C)

Jeffrey Jordon

Jeffrey Jordon

Expert2021-12-12Added 2605 answers

Answer is given below (on video)

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?