Inverse Laplace transformation of (s^2 + s)/(s^2 +1)(s^2 + 2s + 2)

Answered question

2021-06-11

Inverse Laplace transformation

(s2+s)/(s2+1)(s2+2s+2)

Answer & Explanation

Ian Adams

Ian Adams

Skilled2023-04-18Added 163 answers

First, we need to use partial fraction decomposition to simplify the expression:

s2+s(s2+1)(s2+2s+2)=As2+1+Bs+Cs2+2s+2

To find A, we multiply both sides by (s2+1) and then set s=i, where i is the imaginary unit:

(s2+s)=A(s2+1)+(Bs+C)(s2+1)

i2+i=A(i2+1)+(Bi+C)(i2+1)

-1+i = A(-1+1) + (Bi+C)(-1+1) 

-1+i = 2Bi 

B=-1+i2i=1-i2

To find C, we multiply both sides by (s2+2s+2) and then set s = -1+i:

(s2+s)=A(s2+1)+(Bs+C)(s2+2s+2)

(-1+i)2+(-1+i)=A(-1+1)+(B(-1+i)+C)(-1+2i+2)

0=A(2)+(-1+i+B+C)(1+2i)

0=2A+(2-i+C-i)(1+2i)

0=2A+(2C-2)(1+2i)

2C-2 = 0 

C = 1

Now we can rewrite the expression using the partial fractions:

s2+s(s2+1)(s2+2s+2)=As2+1+Bs+1s2+2s+2

Substituting the values of A and B, we get:

s2+s(s2+1)(s2+2s+2)=-i2[1s2+1-1-is2+2s+2]

Now we can use the Laplace transform table to find the inverse Laplace transform of each term:

L-1{1s2+1}=sin(t)L-1{1s2+2s+2}=(12)e-tsin(t)

Therefore, the inverse Laplace transform of the original expression is:

L-1{s2+s(s2+1)(s2+2s+2)}=-i2[sin(t)-(1-i)e-tsin(t)]

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?