Find L^{-1}left{frac{1}{(s + 6)(s - 4)}right}

Daniaal Sanchez

Daniaal Sanchez

Answered question

2020-12-29

Find L1{1(s + 6)(s  4)}

Answer & Explanation

Raheem Donnelly

Raheem Donnelly

Skilled2020-12-30Added 75 answers

Recall: Linearity Property: Suppose f1(p) and  f2(p) are Laplace transformation
of F1(t) and  F2(t) respectively. Then,
L{c1F1(t) ± c2F2(t)}=c1L{F1(t)} ± c2L{F2(t)}=c1f1(p) ± c2f2(p).
For Inverse Laplace transformation,
L1{c1f1(p) ± c2f2(p)}=cL1{f1(p)} ± c2L1{f2(p)}=c  1F1(t) ± c2F2(t).
Results:
L1{1s  a}=cat.
We have to find the value of L1{1(s + 6)(s  4)}.
1(s + 6)(s  4) Can be written as,
1(s + 6)(s  4)=A(s + 6) B(s  4)
=(A + B)s + (4A + 6B)(s + 6)(s  4)
Comparing the coefficients of s and the constant term, we get,
A + B=0 6B  4A=1
 A= B  10B=1[putting A= B]
A= 110  B=110
So, 1(s + 6)(s  4)=110 (1s  4))  110(1s + 6)
Taking Inverse Laplace transformation on both sides of the above equation, we get,
L1{1(s + 6)(s  4)}=L1{110(1s  4) 110(1s + 6)}
=110L1{1s  4}  110L1{1s + 6}
=110c4t  110c6t
=c4t  c6t10
Therefore, the required solution is,
L1

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?