Solve dfrac{d^{2}y}{dt^{2}} - 8dfrac{dy}{dt} + 15y=9te^{3t} with y(0)=5, y'(0)=10

nagasenaz

nagasenaz

Answered question

2020-12-06

Solve dd2ydt2  8ddydt + 15y=9te3t with y(0)=5, y(0)=10

Answer & Explanation

toroztatG

toroztatG

Skilled2020-12-07Added 98 answers

Given:d2ydt2  8dydt + 15y=9te3t
with y(0)=5, y(0)=10
The auxiliary equation is given by m2  8m + 15=0
solving this we get m=5, 3
Hence the complimentary function is yc=C1e3t + C2e5t
Now The P.I. of given differential equation is
yp=1D2  8D + 159tx3t=1(D  3)(D  5)9te3t
=e3t1(D + 3  3)(D + 3  3)9t
=e3t1D(D  2)9t
=e3t12D(1  D2)9t
= e3t21D(1  D2)1(1  D)19t
= e3t21D(1 + D2 + )9t
= e3t21D(9t + 92)
= e3t21D(92t2+ 92t)
= 94e3t(t + t2)
Hence the general solution is y=yc + yp=C1v3t + C2e5t  92e3t(t + t2)
Now y(0)=0  C1 + e2=5(1)
Also y=3C1e2t + 5C2e5t  94[3e3t(1 + 2t)=3e3t(t + t2)]
Hence y(0)=10  3C1 + 5C2  94=10  12C1 + 20C2=49 (2) solving (1) and (2) we get
C1=518, C2=118
Hence the solution is y=518e3t  118e5t  94e3t(t + t2)

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?