Solve the following differential equations using the Laplace transform and the unit step function y"+4y=g(t) y(0)=-1 y'(0)=0 , text{ where } g(t)=begin{cases}t &, tleq 25 & ,t > 2end{cases} y"-y=g(t) y(0)=1 y'(0)=2 , text{ where } g(t)=begin{cases}1 &, tleq 3t & ,t > 3end{cases}

Carol Gates

Carol Gates

Answered question

2021-02-02

Solve the following differential equations using the Laplace transform and the unit step function
y"+4y=g(t)
y(0)=1
y(0)=0, where g(t)={t,t25,t>2
y"y=g(t)
y(0)=1
y(0)=2, where g(t)={1,t3t,t>3

Answer & Explanation

Sally Cresswell

Sally Cresswell

Skilled2021-02-03Added 91 answers

Step 1 Given :The differential equations using the Laplace Transform and the unit step function
y"+4y=g(t)
y(0)=1
y(0)=0, where g(t)={t,t25,t>2 
Step 2
The given initial value problem is
y"+4y=g(t)
y(0)=1
y(0)=0, where g(t)={t,t25,t>2 
Write the step using the Heaviside step functions.
If f(t) is a function of t for t0 whose Laplace Transform F(s) exists , then for any constant a0 , the function
(g(t)=f(ta)u(ta)={0 if ta 
has the Laplace Transform easF(s)
g(t)=(2u(t2))+5u(t2)=2u(t2)+5u(t2)
g(t)=2+4u(t2) So, the initial value problem can be written as
y"+4y=2+4u(t2),y(0)=1,y(0)=0
Taking the Laplace Transform of both sides , we get
s2y¯sy(0)y(0)+4y¯=2s+4e2s
s2y¯s(1)+4y¯=2s+4e2s
s2y¯+s+4y¯=2s+4e2s
(s2+4)y¯=2s+4e2ss
y¯=2s(s2+4)+4e2ss2+4ss2+4
Taking Inverse Laplace Transform , we get
If L1[F(s)]=f(t) then L1(F(s))=0tf(t)dt
L(1)=1s,L1(ss2+4)=cosat,L1(1s2+4)=1asinat
L1[y¯]=L1[2s(s2+4)]+4L1[e2ss2+4]L1[ss2+4]
y=220tsin2tdt+4e2s2sin2tcos2t
 

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?