If the Laplace Transforms of fimetions y_1(t)=int_0^infty e^{-st}t^3dt , y_2(t)=int_0^infty e^{-st} sin 2tdt , y_3(t)=int_0^infty e^{-st}e^t t^2dt exi

permaneceerc

permaneceerc

Answered question

2021-01-27

If the Laplace Transforms of fimetions y1(t)=0estt3dt,y2(t)=0estsin2tdt,y3(t)=0estett2dt exist , then Which of the following is the value of L{y1(t)+y2(t)+y3(t)}
a)3(s4)+2(s2+4)+2(s1)3
B)(3!)(s3)+s(s2+4)+(2!)(s1)3
c)3!(s4)+2(s2+2)+1(s1)3
d)3!(s4)+4(s2+4)+2(s3)1(s1)
e)3!(s4)+2(s2+4)+2(s1)3

Answer & Explanation

SabadisO

SabadisO

Skilled2021-01-28Added 108 answers

Step 1
The Laplace transform of the a function f(t) is defined by the integral:
L(f,s)=0estf(t)dt
for those s where the integral converges.
Step 2
First, find the Laplace transform for the value of f(t)=t3
L(f,s)=0estf(t)dt
f(t)=t3
L(t3,s)=0estt3dt
{Use Laplace transform table: L{tn}=(n!)sn+1}
or L{t3}=6s4=3!(s4)
hence ,L{y1(t)}=3!(s4)
Step 3 Find the Laplace transform for the value of f(t)=sin2t
L(f,s)=0estf(t)dt
f(t)=sin2t
L(sin2t,s)=0estsin2tdt
{Use Laplace transform table: L{sin(at)}=a(s2+a2)}
L{sin(2t)}=2(s2+22)
=2(s2+4)
L{y2(t)}=2(s2+4)
Step 4
The Laplace transform for the value of f(t)=ett2
L(f,s)=0estf(t)dt
f(t)=ett2
L(ett2,s)=0est(ett2)dt
Apply transform rule: 
ifLf(t)=F(s) then Ltkf(t)=(1)kddsk(F(s))
f(t)=et,k=2
L{et}:1(s1) and (d2)(ds2)(1s1)=2(s1)3
=(1)22(s1)3
=2(s1)3
L(y3)=2(s1)3
Step 5
Now, the value of L{y1(x)+y2(x)+y3(x)}:

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?