Solve the following IVP using Laplace Transform y'-2y =1-t , y(0)=4

smileycellist2

smileycellist2

Answered question

2020-11-01

Solve the following IVP using Laplace Transform
y2y=1t,y(0)=4

Answer & Explanation

berggansS

berggansS

Skilled2020-11-02Added 91 answers

Step 1 
The Laplace transform is defined as follows:
y2y=1t,y(0)=4 
Laplace transform applied to both sides:
L{y}2L{y}=L(1)L(t) 
sL(y)y(0)2L(y)=1s1s2 
sL(y)42L(y)=s1s2 
L(y)(s2)=s1s2+4 
L(y)=4s2+s1s2(s2) 
Step 2 
Making the fraction form from the inverse Laplace transform:
(y)=L1{4s2+s1s2(s2)}(i) 
4s2+s1s2(s2)=As+Bs2+C(s2) 
4s2+s1=As(s2)+B(s2)+Cs2 
4s2+s1=(A+C)s2+(2A+B)s2B 
Step 3 
Calculate the values of A, B, and C by comparing the coefficient:
4s2+s1=(A+C)s2+(2A+B)s2B A+C=4,2A+B=1 and 2B=1B=12 
2A+B=12A=112A=14 
A+C=4C=4(14)C=174 
4s2+s1s2(s2)=14s+12s2+174(s2) 
Step 4 
Now, form equation (i): 
(y)=L1{4s2+s1s2(s2)}=L1{14s+12s2+174s2} 
y=14L1{1s}+12L1{1s2}+174L1{1s2} 
Using L1{1s}=(1),L1{1s2}=t,L1{1sa}=eat 
y=14+t2+174e2t

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?