Use integration by parts to find the Laplace transform of the given function f(t)=4tcos h(at)

ka1leE

ka1leE

Answered question

2020-10-31

Use integration by parts to find the Laplace transform of the given function
f(t)=4tcosh(at)

Answer & Explanation

Fatema Sutton

Fatema Sutton

Skilled2020-11-01Added 88 answers

Given function is 
f(t)=4tcosh(at) 
We must locate Laplace transformation by part-by-part integration
So Laplace Transformation is 
Lf(t)=40tcosh(at)estdt 
 Lf(t)=40t(eat+eat2)estdt 
 Lf(t)=20t(e(as)t+e(a+s)t)dt 
 Lf(t)=20te(as)tdt+20te(a+s)tdt 
 Lf(t)=2[te(as)tsae(as)t(sa)2]0+2[te(a+s)ts+ae(a+s)t(s+a)2]0 
 Lf(t)=2[01(sa)2]2[01(s+a)2] 
 Lf(t)=2(sa)2+2(s+a)2 
 Lf(t)=2(2s2+2a2+2as2as)(sa)2(s+a)2 
 Lf(t)=4(s2+a2)(s2a2)2

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?