Wribreeminsl
2021-01-10
Using the second order linear ordinary differential equations existence and uniqueness theorem , find the largest interval in which the solution to the initial value is certain to exist.
2abehn
Skilled2021-01-11Added 88 answers
The basic value issue presented is:
If p(x), q(x) and g(x) are continuous on the interval [a,b], then the second order differential equation
has a unique solution defined for all x in [a,b].
The differential equation with the following definition.
Compare the above equation to the typical starting value problem.
Then, and and
The function p(t) is continuous for all values of t except t=w and t=-2
The function q(t) is continuous for all values of t except t=w and t=-2
The domain of the both the function is
Thus, the function has a unique solution at the point t=1 on the largest interval (-2,2)
Answer:
The solution to the initial value problem exist on the largest interval is (−2, 2).
The Laplace transform of the product of two functions is the product of the Laplace transforms of each given function. True or False
The Laplace transform of
(a)
(b)
(c)
1 degree on celsius scale is equal to
A) degree on fahrenheit scale
B) degree on fahrenheit scale
C) 1 degree on fahrenheit scale
D) 5 degree on fahrenheit scale
The Laplace transform of is A. B. C. D.
What is the Laplace transform of
Find the general solution of the given differential equation:
The rate at which a body cools is proportional to the difference in
temperature between the body and its surroundings. If a body in air
at 0℃ will cool from 200℃ 𝑡𝑜 100℃ in 40 minutes, how many more
minutes will it take the body to cool from 100℃ 𝑡𝑜 50℃ ?
A body falls from rest against a resistance proportional to the velocity at any instant. If the limiting velocity is 60fps and the body attains half that velocity in 1 second, find the initial velocity.
What's the correct way to go about computing the Inverse Laplace transform of this?
I Completed the square on the bottom but what do you do now?
How to find inverse Laplace transform of the following function?
I tried to use the definition: or the partial fraction expansion but I have not achieved results.
How do i find the lapalace transorm of this intergral using the convolution theorem?
How can I solve this differential equation? :
Find the inverse Laplace transform of
inverse laplace transform - with symbolic variables:
My steps: