(3xy^{2}-9xy-30x)dx+(x^{2}+9)dy=0

piarepm

piarepm

Answered question

2021-12-26

(3xy29xy30x)dx+(x2+9)dy=0

Answer & Explanation

Jacob Homer

Jacob Homer

Beginner2021-12-27Added 41 answers

Step 1
Separate the variables both sides then integrate to get the answer.
Step 2
Given. (3xy29xy30x)dx+(x2+9)dy=0
3x(y23y10)dx+(x2+9)dy=0
3x(y2+2y5y10)dx+(x2+9)dy=0
3x(y(y+2)5(y+2))dx+(x2+9)dy=0
3x(y+2)(y5)dx+(x2+9)dy=0
devide the whole equation by (y+2)(y5)(x2+9)
3xx2+9dx+1(y+2)(y5)dy=0
1(y+2)(y5)dx=3xx2+9dx
(y+2)(y5)(y+2)(y5)dy=322xx2+9dx
17(1y51y+2)dy=322xx2+9dx
Integrating both sides
Piosellisf

Piosellisf

Beginner2021-12-28Added 40 answers

(3xy29xy30x)dx+(x2+9)dy=0
3x(y23y10)dx+(x2+9)dy=0
3x(y25y+2y10)dx=(x2+9)dy
3xdxx2+9=dy(y25y+2y10)
322xdxx2+9=dyy(y5)+2(y5)
322xdxx2+9=dy(y+2)(y5)
322xdxx2+9=17(1y+21y5)dy
Integrat both side
322xx2+9dx=17(1y+21y5)dy
32ln(x2+9)=17[ln(y+2)ln(y5)]
32ln(x2+9)=17ln[y+2y5]+c
user_27qwe

user_27qwe

Skilled2022-01-05Added 375 answers

3x(y23y10)dx+(x2+9)dy=03x(y2+2y5y10)dx+(x2+9)dy=03x(y(y+2)5(y+2))dx+(x2+9)dy=03x(y+2)(y5)dx+(x2+9)dy=0devide the whole equation by(y+2)(y5)(x2+9)3xx2+9dx+1(y+2)(y5)dy=01(y+2)(y5)dx=3xx2+9dx(y+2)(y5)(y+2)(y5)dy=322xx2+9dx17(1y51y+2)dy=322xx2+9dx17(1y51y+2)dy=322xx2+9dx17(ln(y5)ln(y+2))=32ln(x2+9)+cln(y5y+2)1/7=ln[(x2+9)3/2c](y5y+2)1/7=(x2+9)3/2c

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?