Solve the given differential equation. If an initial condition is

compagnia04

compagnia04

Answered question

2021-12-29

Solve the given differential equation. If an initial condition is given, also find the solution that satisfies it.
(ex+1)dydx=yyex

Answer & Explanation

Edward Patten

Edward Patten

Beginner2021-12-30Added 38 answers

Step 1
Given differential equation,
(ex+1)dydx=yyex
Step 2
Since we have,
(ex+1)dydx=yyex
(ex+1)dydx=y(1ex)
dyy=1ex1+exdx [Variable seperable form]
Integrate both sides,
dyy=1ex1+exdx (1)
Step 3
Now firstly simplify 1ex1+exdx,
Substitute ex=uexdx=dudx=1exdu, so
1ex1+exdx=1u1+uduu
=1uu(1u)du (2)
Simplify 1uu(1+u) using partial fraction method,
1uu(1+u)=Au+B1+u (3)
1u=A(1+u)+Bu
put u=0,A=1
Put u=1,B=2
Substitute the value of A and B in (3),
1uu(1+u)=1u21+u (4)
Using (4) i (2),
1ex1+ex=(1u21+u)du
=lnu2ln
Mollie Nash

Mollie Nash

Beginner2021-12-31Added 33 answers

Given differential equation is (ex+1)dydx=yyex
(ex+1)dydx=y(1ex)
on separaing the variables, we get
dyy=1ex1+exdx
Integrating on both sides
dyy=1ex1+exdx
lny=(1+ex)2ex1+exdx
lny=(12ex1+ex)dx
lny=x2ln(1+ex)+c
y=ex2h(1+e)+c
y=exe2h(1+e)ec
y=c1exeln(1+e) where c1=ec
y=c1ex(1+ex)2
Therefore the solution of the given differential equation is y=c1ex(1+ex)2
karton

karton

Expert2022-01-09Added 613 answers

(ex+1)dydx=yyex(ex+1)dydx=yyex(ex+1)dydx=y(1ex)dyy=1ex1+exdxdyy=1ex1+exdx(1)1ex1+exdx,ex=uexdx=dudx=1exdu,1ex1+exdx=1u1+uduu=1uu(1u)du(2)1uu(1+u),1uu(1+u)=Au+B1+u(3)1u=A(1+u)+Buu=0,A=1u=1,B=21uu(1+u)=1u21+u (4)Using (4) and (2),1ex1+ex=(1u21+u)du=lnu2ln(1+u)+c=ln(ex)2ln(1+ex)+c1ex1+exdx in (1),dyy=ln(ex)2ln(1+ex)+clny=x2ln(1+ex)+clny=(x+c)+ln(1+ex)2y=ex+c(1+ex)2Answer: y=ex+c(1+ex)2

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?