Solve the following differential equations: y" - y' = 5e^{x}

Bobbie Comstock

Bobbie Comstock

Answered question

2021-12-28

Solve the following differential equations: yy=5exsin(2x)

Answer & Explanation

deginasiba

deginasiba

Beginner2021-12-29Added 31 answers

yy=5exsin(2x)
Auxilary equation is m2m=0
m(m1)=0m=0,1
Complementary function =c1+c2ex
Particular solution =1D(D1)5ex1D2Dsin2x
=5(1D11D)ex14Dsin2x
=5(xexex)+(D4)(D+4)(D4)sin2x
=5(xexex)+(D4)D216sin2x
=5ex(x1)+(D4)416sin2x
=5ex(x1)120(2cos2x4sin2x)
y(x)=c1+c2ex+5ex(x1)110cos2x+15sin2x
Maricela Alarcon

Maricela Alarcon

Beginner2021-12-30Added 28 answers

Step 1
Given differential equation,
yy=5exsin(2x)
Step 2
Evaluate complementary function:
m2m=0
m(m1)=0
m=0,1
Since roots are real and non repeated so complementary function is
yc=c1e0x+c2ex
yc=c1+c2ex
Step 3
Now evaluate particular integral:
yp=1D2D(5exsin2x)
=1D2D(5ex)1D2D(sin2x)
=51D2D(ex)1D2D(sin2x)
=5x2D1ex14D(sin2x)
=5x2(1)1ex+1(D+4)×(D4)(D4)(sin2x)
=5xex+(D4)(D216)(sin2x)
=5xex+(D4)(416)(sin2x)
=5xex120(D4)(sin2x)
=5xex120(2cos2x4sin2x)
Step 4
Since complete solution of differential equation is sum of complementary function and particular integral, so
y=yc+yp
karton

karton

Expert2022-01-09Added 613 answers

yy=5exsin(2x)m2m=0m(m1)=0m=0,1yc=c1e0x+c2exyc=c1+c2exyp=1D2D(5exsin2x)=1D2D(5ex)1D2D(sin2x)=51D2D(ex)1D2D(sin2x)=5x2D1ex14D(sin2x)=5x2(1)1ex+1(D+4)×(D4)(D4)(sin2x)=5xex+(D4)(D216)(sin2x)=5xex+(D4)(416)(sin2x)=5xex120(D4)(sin2x)=5xex120(2cos2x4sin2x)y=yc+ypy=c1+c2ex+5xex120(2cos2x4sin2x)y=c1+c2ex+5xex120(2cos2x4sin2x)

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?