Solve for the differential equations and get the general solution.

William Collins

William Collins

Answered question

2021-12-29

Solve for the differential equations and get the general solution. Simplify your answer free from In. dy=tanxtanydx

Answer & Explanation

vrangett

vrangett

Beginner2021-12-30Added 36 answers

dy=tanxtany dx
dytany=tanxdx
dysinycosy=tanxdx
cosy dysiny=tanx dx
cosysinydy=tanx dx
ln(siny)=ln(cosx)+C
eln(siny)=eln(cosx)+C
siny=eln(cosx)1eC
siny=(cosx)1.eC
siny=eCcosx
y=sin1(eCcosx)
Answer: The general solution is y=sin1(eCcosx)
Hattie Schaeffer

Hattie Schaeffer

Beginner2021-12-31Added 37 answers

Given differential equation
dy=tanxtany dx
dytany=tanx dx
cosysinydy=sinxcosxdx
Integrating, cosysinydy=sinxcosxdx (1)
We substitute left hand integral
u=siny
du=cosy dy
and right hand integral
cosx=v
sinx dx=dv
sinx dx=dv
Then from (1)
duu=dvv
ln(u)=ln(v)+ln(c)
ln(u)=ln(cv)
u=cv
vu=c
cosxsiny=c
Hence solution is cosxsiny=c
karton

karton

Expert2022-01-09Added 613 answers

We know,
1)ln|a|+ln|b|=ln|ab|2)cotx dx=ln|sinx|+c1,c1 is an integration constant3)tanx dx=ln|cosx|+c2,c2 is an integration constant.Given differential equation,dy=tanxtany dx(1)dytany=tanx dxdytany=tanx dxcoty dy=tan x dxln|sinx|=ln|cosx|+ln(c),c is an integration constantln|sinx|+ln|cosx|=ln(c)ln|sinxcosx|=ln(c)sinxcosx=c is the required solution of (1).

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?