y'=\cos^{2}x \cos y

Jessie Lee

Jessie Lee

Answered question

2021-12-27

y=cos2xcosy

Answer & Explanation

porschomcl

porschomcl

Beginner2021-12-28Added 28 answers

Given, y=cos2xcosy
dydx=cos2xcosy
dycosy=cos2xdx
Integrate both side, we get
dycosy=cos2x dx
secydy=(1+cos2x2)dx
ln(secx+tany)=12(x+sin2x2)+c
ln(secy+tanx)=x2+sin2x4+c
Hence, solution of above differential equation is:
ln(secy+tany)=x2+sin2x4+c
secy dy=secy(secy+tany)(secy+tany)dy=(sec2y+secytany)secy+tanydy
Let, v=secy+tany
differentiate both side, we get
dv=(secytany+sec2y)dy
1vdv=lnv+c
=ln(secy+tany)+c
secydy=ln(secy+tany)+c
Paineow

Paineow

Beginner2021-12-29Added 30 answers

dydx=cos2xcosy
Separate the variable x and y both side.
dycosy=cos2x dx
Simplify secy dy=cos2xdx
Integrate both side of equation
secy dy=cos2x dx
ln|tany+secy|=(1+cos2x)2dx
=12(1+cos2x)dx
ln|tany+secy|=12[x+sin2x2]+c
karton

karton

Expert2022-01-09Added 613 answers

dydx=cos2xcosydycosy=cos2xdxdycosy=cos2x dxsecydy=(1+cos2x2)dxln(secx+tany)=12(x+sin2x2)+cln(secy+tanx)=x2+sin2x4+cln(secy+tany)=x2+sin2x4+csecy dy=secy(secy+tany)(secy+tany)dy=(sec2y+secytany)secy+tanydyLet, v=secy+tanydv=(secytany+sec2y)dy1vdv=lnv+c=ln(secy+tany)+csecydy=ln(secy+tany)+c

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?