Applications of Differential and Difference Equations Solve (D^{2}-2D+1)y=xe^{x} \sin x

maduregimc

maduregimc

Answered question

2022-01-18

Applications of Differential and Difference Equations
Solve (D22D+1)y=xexsinx

Answer & Explanation

otoplilp1

otoplilp1

Beginner2022-01-19Added 41 answers

(D22D+1)y=xexsinx
The auxiliary equation is m22+1=0
m=1,1
C.F=(Ax+B)ex
P.I=1D22D+1×exsinx
=ex1(D+1)22(D+1)+1×sinx
=ex[1D2]×sinx
=ex[x1D2sinx]ex2D(D2)2sinx
=xexsinx2excosx
=ex(xsinx+2cosx)
y=cf+π
y=(Ax+b)exex(xsinx+2cosx)
Navreaiw

Navreaiw

Beginner2022-01-20Added 34 answers

The auxiliary equation is m22+1=0
m=1,1
C.F=(Ax+B)ex
=1D22D+1xexsinx
=ex1(D+1)22(D+1)+1xsinx
=ex[1D2]xsinx
=ex[x1D2sinx]ex2D(D2)2sinx
=xexsinx2excosx
=ex(xsinx+2cosx)
y=C.F+P.I.
y=(Ax+B)exex(xsinx+2cosx)
alenahelenash

alenahelenash

Expert2022-01-24Added 556 answers

yp=1D2D+1xexsinx=ex1(D+1)2(2D+D)+1xsinx=ex1D2+2D+12D2+1xsinx=ex1D2xsinxIn that case x and sin x, sinx=vNote: yp=1F(D)[x×V]=x[1×[v]F(D)F(D)x[v][F(D)]2]=ex{(xsinxD2)(2D×sinx(D2)2)}=ex{(xsinx(1))(2D×sinxD4)}=ex{(xsinx)(2D3sinx)}=ex{(xsinx)2sinxD×D2}=ex(xsinx2sinxD×(1))(Put D2=(1)2)=ex(xsinx2cosx)yp=ex(xsinx+2cosx)

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?