Solve: \frac{dy}{dx}-\frac{dx}{dy}=\frac{y}{x}-\frac{x}{y}

hadejada7x

hadejada7x

Answered question

2022-01-20

Solve: dydxdxdy=yxxy

Answer & Explanation

raefx88y

raefx88y

Beginner2022-01-20Added 26 answers

If u and v are real numbers 0 then
v1v=u1u
holds if either v=u or v=1u.
Elaine Verrett

Elaine Verrett

Beginner2022-01-21Added 41 answers

xy(dydx)2dydxy2+dydxx2xy=0
y(dydx)(x(dydx)y)+x(x(dydx)y)=0
(x(dydx)y)(y(dydx)+x)=0
dydx=xyydy=xdx
and dydx=yxdyy=dxx
RizerMix

RizerMix

Expert2022-01-27Added 656 answers

v1v=u1u u,v0 and vu=1v1u=vuuv u=c0 or uv=1 (i.e.v=δuδ0 for δ=±1) Now dydx and dxdy are reciprocals, so dydxdxdy=yxxy dydx=yx or dydx=xy dyy=dxx or ydy=xdx ln|y|=ln|x|+c1 or y22=x22+c2 y=(±ec1)x or y2=x2+2c2 y=ax or y2=x2+b

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?