find the solution of the differential equation that

Answered question

2022-04-06

 find the solution of the differential equation that satisfies the given initial condition

 

xy'+y=y^2 , y(1)=-1

 

Answer & Explanation

RizerMix

RizerMix

Expert2022-05-03Added 656 answers

xy+y=y2 , y(1)=-1

Separate the variables.

Solve for dydx.

Subtract y from both sides of the equation.

xdydx=y2-y

Divide each term in xdydx=y2-y by x and simplify.

dydx=y2x-yx

Factor.

dydx=y(y-1)x

Multiply both sides by 1y(y-1).

1y(y-1)dydx=1y(y-1)y(y-1)x

Cancel the common factor of y(y-1).

1y(y-1)dydx=1y(y-1)y(y-1)x

Rewrite the expression.

1y(y-1)dydx=1x

Rewrite the equation.

1y(y-1)dy=1xdx

Integrate both sides.

ln(|y-1|)-ln(|y|)=ln(|x|)+C

Solve for y.

Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).

ln(|y-1||y|)=ln(|x|)+C

Reorder ln(|x|) and C.

ln(|y-1||y|)=C+ln(|x|)

Move all the terms containing a logarithm to the left side of the equation.

ln(|y-1||y|)-ln(|x|)=C

Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).

ln(|y-1||y||x|)=C

Multiply the numerator by the reciprocal of the denominator.

ln(|y-1||y|1|x|)=C

Multiply|y-1||y|1|x|.

Multiply |y-1||y| by 1|x|.

ln(|y-1||y||x|)=C

To multiply absolute values, multiply the terms inside each absolute value.

ln(|y-1||yx|)=C

To solve for yy, rewrite the equation using properties of logarithms.

eln(|y-1||yx|)=eC

Rewrite ln(|y-1||yx|)=C in exponential form using the definition of a logarithm. If x and b are positive real numbers and b1, then logb(x)=y is equivalent to by=x.

eC=|y-1||yx|

Solve for y.

y=-1xeC-1

y=1xeC+1

Simplify the constant of integration.

y=-1xC-1

y=1xC+1

Since y is negative in the initial condition (1,-1), only consider y=-1xC-1 to find the CC. Substitute 1 for x and -1 for y.

-1=-11C-1

Solve for C.

Rewrite the equation as -11C-1=-1.

-11C-1=-1

Multiply C by 1.

-1C-1=-1

Find the LCD of the terms in the equation.

C-1

Multiply each term in -1C-1=-1 by C-1 to eliminate the fractions.

-1=-C+1

Solve the equation.

C=2

Substitute 2 for C in y=-1xC-1 and simplify.

y=12x1

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?