Using Laplace Transforms, find the solution to y′(t)+y(t−1)=t^2, with y(t)=0 for t <= 0.

steveo963200054

steveo963200054

Answered question

2022-09-13

Using Laplace Transforms, find the solution to y ( t ) + y ( t 1 ) = t 2 , with y(t)=0 for t 0

Answer & Explanation

Brooklynn Valencia

Brooklynn Valencia

Beginner2022-09-14Added 18 answers

After applying the Laplace transform to the equation,
s Y ( s )  y ( 0  )  = 0 + e  s Y ( s ) = 2 s 3 
It follows
Y ( s ) = 2 s 3 1 s + e  s = 2 s 4 1 1 + 1 s e  s = 2  n = 0  (  1 ) n s n + 4 e  n s 
It follows
y ( t ) =  η  i  η + i  d s 2 π i e s t Y ( s ) = 2  n = 0  (  1 ) n  η  i  η + i  d s 2 π i e s t 1 s n + 4 e  n s 
=  n = 0  2 (  1 ) n ( n + 3 ) ! ( t  n ) n + 3 Θ ( t  n ) .
Cauchy theorem was applied in the previous line.

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?