Try to find the inverse Laplace transform of: F(S)=(e^(-pi s)+2+s)/(s^2+2s+2)

miklintisyt

miklintisyt

Answered question

2022-10-20

Try to find the inverse Laplace transform of:
F ( S ) = e π s + 2 + s s 2 + 2 s + 2

Answer & Explanation

Hamnetmj

Hamnetmj

Beginner2022-10-21Added 21 answers

f ( t ) = L 1 { F ( s ) } = L 1 ( e π s + 2 + s s 2 + 2 s + 2 )
(1) = L 1 ( e π s s 2 + 2 s + 2 ) + L 1 ( s + 2 s 2 + 2 s + 2 )
Now
L 1 ( s + 2 s 2 + 2 s + 2 ) = L 1 ( s + 1 ( s + 1 ) 2 + 1 ) + L 1 ( 1 ( s + 1 ) 2 + 1 ) = e t   cos t   +   e t   sin t
and
L 1 ( e π s s 2 + 2 s + 2 ) = H ( t π ) e ( t π ) sin ( t π ) (by second shifting property )
where   H ( x ) = { 1 , if           x 0 0 , if           x < 0   be the Heaviside function.
Now from (1) ,
f ( t ) = L 1 { F ( s ) } = e t   cos t   +   e t   sin t   +   H ( t π ) e ( t π ) sin ( t π )
Remarks:
L = { e a t } = 1 p a L 1 { 1 p a } = e a t
L = { sin ( a t ) } = a p 2 + a 2 L 1 { a p 2 + a 2 } = sin ( a t )
L = { cos ( a t ) } = p p 2 + a 2 L 1 { p p 2 + a 2 } = cos ( a t )
Second Shifting Property: If   L 1 { F ( p ) } = f ( t )   , then   L 1 { F ( p )   e a p } = g ( t )   where
  g ( t ) = { f ( t a ) if       t   >   a 0                         if       t   <   a  
which can also be written as
L 1 { e a p   F ( p ) } = f ( t a )   H ( t a )
where   H ( x ) = { 1 , if           x 0 0 , if           x < 0   be the Heaviside function.
Mattie Monroe

Mattie Monroe

Beginner2022-10-22Added 3 answers

Break the numerator into three terms and use linearity:
1 2 i e ( 1 i ) ( t π ) ( 1 + e 2 i ( t π ) ) θ ( t π ) ,
i e ( 1 i ) t ( 1 + e 2 i t ) ,
and
( 1 2 + i 2 ) e ( 1 i ) t ( e 2 i t i ) .
Add them.

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Differential Equations

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?