pedzenekO

2021-08-15

The game of Clue involves 6 suspects, 6 weapons, and 9 rooms. One of each is randomly chosen and the object of the game is to guess the chosen three. (1) How many solutions are possible? In one version of the game, the selection is made and then each of the players is randomly given three of the remaining cards. Let S, W, and R be, respectively, the numbers of suspects, weapons, and rooms in the set of three cards given to a specified player. Also, let X denote the number of solutions that are possible after that player observes his or her three cards. (2) Express X in terms of S, W, and R. (3) Find E[X]

2k1enyvp

Skilled2021-08-16Added 94 answers

(1)

The given information:

-The number of suspects is 6

-The number of rooms is 9

-The number if weapons is 6

Each is given one at random. Identifying the three choices is the goal of the game.

Let's determine the total number of potential answers.

The total number of solutions = The number of suspects * The number of weapons* The number of rooms=6*6*9=324

(2)

Three of the remaining cards are randomly distributed to each player after the selection is completed.

-Let S represents the number of suspects in the set of three cards

-Let W represents the number of weapons in the set of three cards

-Let R represents the number of rooms in the set of three cards

-Let x represents the number of solutions that are possible after a player observes given three cards.

X=(6-S)*(6-W)*(9-R)

(3)

The value of $S,W,R\Rightarrow \{0,1,2,3\}$

And we have, S+W+R=3

{3,0,0},{0,3,0},{0,0,3} {1,1,1},{2,1,0},{2,0,1},{1,2,0},{0,2,1},{1,0,2},{0,1,2}, these are combinations of 3 cards.

So, there are 10 possible combinations of 3 cards.

E[X]=1/10sum_Ssum_Wsum_R(6-S)*(6-W)*(9-R)=1/10sum_S(6-S)sum_W(6-W)sum_R(9-R)=1/10[6sum_(W+R=3) (6-W)(9-R)+5sum_(W+R=2) (6-W)(9-R)+4sum_(W+R=1) (6-W)(9-R)+3sum_(W+R=0) (6-W)(9-R)]=190.4

Assume that when adults with smartphones are randomly selected, 54% use them in meetings or classes (based on data from an LG Smartphone survey). If 8 adult smartphone users are randomly selected, find the probability that exactly 6 of them use their smartphones in meetings or classes?

Write formula for the sequence of -4, 0, 8, 20, 36, 56, 80, where the order of f(x) is 0, 1, 2, 3, 4, 5, 6 respectively

A binomial probability experiment is conducted with the given parameters. Compute the probability of x successes in the n independent trials of the experiment.n=20,

p=0.7,

x=19

P(19)=

In binomial probability distribution, the dependents of standard deviations must includes.

a) all of above.

b) probability of q.

c) probability of p.

d) trials.The probability that a man will be alive in 25 years is 3/5, and the probability that his wifewill be alive in 25 years is 2/3

Determine the probability that both will be aliveHow many different ways can you make change for a quarter??

(Different arrangements of the same coins are not counted separately.)One hundred people line up to board an airplane that can accommodate 100 passengers. Each has a boarding pass with assigned seat. However, the first passenger to board has misplaced his boarding pass and is assigned a seat at random. After that, each person takes the assigned seat. What is the probability that the last person to board gets his assigned seat unoccupied?

A) 1

B) 0.33

C) 0.6

D) 0.5The value of $(243{)}^{-\frac{2}{5}}$ is _______.

A)9

B)$\frac{1}{9}$

C)$\frac{1}{3}$

D)01 octopus has 8 legs. How many legs does 3 octopuses have?

A) 16

B 24

C) 32

D) 14From a pack of 52 cards, two cards are drawn in succession one by one without replacement. The probability that both are aces is...

A pack of cards contains $4$ aces, $4$ kings, $4$ queens and $4$ jacks. Two cards are drawn at random. The probability that at least one of these is an ace is A$\frac{9}{20}$ B$\frac{3}{16}$ C$\frac{1}{6}$ D$\frac{1}{9}$

You spin a spinner that has 8 equal-sized sections numbered 1 to 8. Find the theoretical probability of landing on the given section(s) of the spinner. (i) section 1 (ii) odd-numbered section (iii) a section whose number is a power of 2. [4 MARKS]

If A and B are two independent events such that $P(A)>0.5,P(B)>0.5,P(A\cap \overline{B})=\frac{3}{25}P(\overline{A}\cap B)=\frac{8}{25}$, then the value of $P(A\cap B)$ is

A) $\frac{12}{25}$

B) $\frac{14}{25}$

C) $\frac{18}{25}$

D) $\frac{24}{25}$The unit of plane angle is radian, hence its dimensions are

A) $[{M}^{0}{L}^{0}{T}^{0}]$

B) $[{M}^{1}{L}^{-1}{T}^{0}]$

C) $[{M}^{0}{L}^{1}{T}^{-1}]$

D) $[{M}^{1}{L}^{0}{T}^{-1}]$Clinical trial tests a method designed to increase the probability of conceiving a girl. In the study, 340 babies were born, and 289 of them were girls. Use the sample data to construct a 99% confidence interval estimate of the percentage of girls born?