I'm studying the Cartesian product, which is bound to the idea of a binary relation. Even with Carte

yopopolin10d

yopopolin10d

Answered question

2022-05-02

I'm studying the Cartesian product, which is bound to the idea of a binary relation. Even with Cartesian products of several sets, n-ary Cartesian products, we have to think combinatorically as two sets at a time, recursively. Is there any sort of operation where there is, say, a triary operation happening. Obviously, when we have 3 2 1 we have to think of associative rules, forcing subtraction to be a binary operator "step-through" affair. There is no 3 2 1 operator that does something in one fell swoop to all three numbers is there? Lisp has (+ 1 2 3) and grade-school math has vertical addition with the plus-sign and a line under the lowest number, but these are not "internally" non-binary. The only thing that takes "three at once" is, yes, a product-based operator, again, an n-ary Cartesian product. Correct? Another example would be playing poker and being dealt five cards. The cards were shuffled, which is a combinatoric permutation of the stack of cards, which are then dealt into hands. Is there anything from probability (or anywhere) that doesn't start with a shuffle permutation therefore binary, rather, just looks at the five cards coming together non-permutation-, non-binary-wise?

Answer & Explanation

Giancarlo Brooks

Giancarlo Brooks

Beginner2022-05-03Added 11 answers

How about a 3-number average? (Or more numbers if you want an operator that takes more than 3 arguments.) You don't get the correct value by averaging the first two numbers and then averaging that result with the third.

Do you have a similar question?

Recalculate according to your conditions!

New Questions in High school probability

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?