David Lewis
2021-12-17
Juan Spiller
Beginner2021-12-18Added 38 answers
stomachdm
Beginner2021-12-19Added 33 answers
nick1337
Expert2021-12-27Added 777 answers
(a)
To calculate:
The number of ways a batch of 30 batteries can be distributed among eight
categories.
Formula used:
The namber of ways to select r number of elements from a set of n elements is
given by:
Calculation
It is nedded to select an inventory of 30 individuals from eight diffeent types and
it is possible to select all units from one types or miss one or few types in the
selection.
Let n=8, r=30.
(b)
To find :
Thenumber of possibilities to select inventore of 30 batteries representing all eught
categories including at least 4 batteries form category A76.
Calculation
In part(a) we have obtained the number is shows that possible ways to select 30
batteries. By subtracting the number of ways to select 30 batteries includung ar
most 3 units of A76 from this total count, the number of ways that can be select a
batch of 30 batteries with at least 4 batteries of A76 can be found.
Now substitute n=7, r=29.
[
Then, the selection of 2 units from A776 is substituting n=7, r=28.
Then, the selection of 3 units from A76 is substitutiong n=7, r=27.
If there is no A76 batteries then n=7, r=30.
Thus, the total number of possible ways to selecting 30 batteries,
(c)
To find:
The number of possible ways to select a batch of 30 batteries including at most 3
batteries from the type AT6
Calculation:
The number of possible ways to select a batch of 30 batteries includung at most 3
batteries from the type A76 can be calculated by subtract nymber of possible ways
to selecting 30 batteries including at least 4 of A76 from total possibility.
That is
In a regression analysis, the variable that is being predicted is the "dependent variable."
a. Intervening variable
b. Dependent variable
c. None
d. Independent variable
What is in math?
Repeated addition is called ?
A)Subtraction
B)Multiplication
C)Division
Multiplicative inverse of 1/7 is _?
Does the series converge or diverge this
Use Lagrange multipliers to find the point on a surface that is closest to a plane.
Find the point on closest to using Lagrange multipliers.
I recognize as my constraint but am unable to recognize the distance squared I am trying to minimize in terms of 3 variables. May someone help please.
Just find the curve of intersection between and
Which equation illustrates the identity property of multiplication? A B C D
The significance of partial derivative notation
If some function like depends on just one variable like , we denote its derivative with respect to the variable by:
Now if the function happens to depend on variables we denote its derivative with respect to the th variable by:
Now my question is what is the significance of this notation? I mean what will be wrong if we show "Partial derivative" of with respect to like this? :
Does the symbol have a significant meaning?
The function is a differentiable function at such that and for every . Define , with the given about. Is it possible to calculate or , or ?
Given topological spaces , consider a multivariable function such that for any , the functions in the family are all continuous. Must itself be continuous?
Let be an independent variable. Does the differential dx depend on ?(from the definition of differential for variables & multivariable functions)
Let and let . Then find derivative of , denoted by .
So, Derivative of if exists, will satisfy .
if and ,
1) 𝑎𝑛𝑑 so his means that the function is a function of one variable which is
2) while we were computing 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 we treated and as two independent variables although that changes as changes but while doing the 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 w.r.t we treated and as two independent varaibles and considered as a constant
Let be defined as
then check whether its differentiable and also whether its partial derivatives ie are continuous at . I dont know how to check the differentiability of a multivariable function as I am just beginning to learn it. For continuity of partial derivative I just checked for as function is symmetric in and . So turns out to be
which is definitely not as . Same can be stated for . But how to proceed with the first part?