Adela Brown

## Answered question

2021-12-31

Determine the following indefinite integral.
$\int \left(\sqrt[4]{{x}^{3}}+\sqrt{{x}^{5}}\right)dx$

### Answer & Explanation

Cheryl King

Beginner2022-01-01Added 36 answers

Step 1
To evaluate the indefinite integral, $\int \left(\sqrt[4]{{x}^{3}}+\sqrt{{x}^{5}}\right)dx$.
Solution:
The given integral is,
$\int \left(\sqrt[4]{{x}^{3}}+\sqrt{{x}^{5}}\right)dx$
Simplifying the given integral gives,
$\int \left(\sqrt[4]{{x}^{3}}+\sqrt{{x}^{5}}\right)dx=\int \left({x}^{3/4}+{x}^{5/2}\right)dx$
$=\int {x}^{\frac{3}{4}}dx+\int {x}^{\frac{5}{2}}dx$
Step 2
Solving the given integral further we get,
$\int {x}^{\frac{3}{4}}dx+\int {x}^{\frac{5}{2}}dx=\frac{{x}^{\frac{7}{4}}}{\frac{7}{4}}+\frac{{x}^{\frac{7}{2}}}{\frac{7}{2}}+c$
$=\frac{4}{7}{x}^{\frac{7}{4}}+\frac{2}{7}{x}^{\frac{7}{2}}+c$
Hence, the value of the integral is $\frac{4}{7}{x}^{74}+27{x}^{72}+c$.

Terry Ray

Beginner2022-01-02Added 50 answers

$\int \left(\sqrt{{x}^{5}}+\sqrt[4]{{x}^{3}}\right)dx$
$\int \left({x}^{\frac{5}{2}}+{x}^{\frac{3}{4}}\right)dx$
$=\int {x}^{\frac{5}{2}}dx+\int {x}^{\frac{3}{4}}dx$
$\int {x}^{\frac{5}{2}}dx$
$=\frac{2{x}^{\frac{7}{2}}}{7}$
$\int {x}^{\frac{3}{4}}dx$
$=\frac{4{x}^{\frac{7}{4}}}{7}$
$\int {x}^{\frac{5}{2}}dx+\int {x}^{\frac{3}{4}}dx$
$=\frac{2{x}^{\frac{7}{2}}}{7}+\frac{4{x}^{\frac{7}{4}}}{7}$
$\int \left({x}^{\frac{5}{2}}+{x}^{\frac{3}{4}}\right)dx$
$=\frac{2{x}^{\frac{7}{2}}}{7}+\frac{4{x}^{\frac{7}{4}}}{7}+C$
Let's rewrite / simplify:
$=\frac{2\left({x}^{\frac{7}{2}}+2{x}^{\frac{7}{4}}\right)}{7}+C$

karton

Expert2022-01-04Added 613 answers

$\begin{array}{}\int \sqrt[4]{{x}^{3}}+\sqrt{{x}^{5}}dx\\ \int {x}^{\frac{3}{4}}+{x}^{2}\sqrt{x}dx\\ \int {x}^{\frac{3}{4}}+{x}^{2}×{x}^{\frac{1}{2}}dx\\ \int {x}^{\frac{3}{4}}+{x}^{\frac{5}{2}}dx\\ \int {x}^{\frac{3}{4}}dx+\int {x}^{\frac{5}{2}}dx\\ \frac{4x\sqrt[4]{{x}^{3}}}{7}+\frac{2{x}^{3}\sqrt{x}}{7}\\ \frac{4x\sqrt[4]{{x}^{3}}+2{x}^{3}\sqrt{x}}{7}\\ \frac{4x\sqrt[4]{{x}^{3}}+2{x}^{3}\sqrt{x}}{7}+C\end{array}$

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?