Suppose (B - C)D = 0, where B and C are Pm x nZSK matrices and D is invertible. Show that B = C

Patience Owens

Patience Owens

Open question

2022-08-18

Suppose (BC)D=0, where B and C are m×n matrices and D is invertible. Show that B=C

Answer & Explanation

Tess Pollard

Tess Pollard

Beginner2022-08-19Added 8 answers

Step 1
Since D is invertible then D1 exist and DD1=In. Here B and C are m×n matrices such that
(BC)D=0
(BC)D×D1=0×D1
(BC)(DD1)=0
BC=0
B=C
kilmchixvoicktf

kilmchixvoicktf

Beginner2022-08-20Added 1 answers

Step 1
We know that (BC)D=0
Since D it invertible, D has an inverce D1
We multiply both sides of (BC)D=0 by D1 on the right side:
(BC)D×D1=0×D1
Note that 0D1=In, and 0D1=0
So we are left with BC=0, which rearranges to B=C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?