Find all the antiderivatives of the following function. Check your work by taking derivatives.p(x)=3\sec^{2}xZKS

jernplate8

jernplate8

Answered question

2021-02-10

Find all the antiderivatives of the following function. Check your work by taking derivatives.
p(x)=3sec2x

Answer & Explanation

Alannej

Alannej

Skilled2021-02-12Added 104 answers

Step 1
To find an antiderivative of the function: p(x)=3sec2x
Solution:
Given function is: p(x)=3sec2x.
For finding antiderivative we need to integrate the given function.
3sec2xdx=3sec2xdx
=3tanx+c (using sec2xdx=tanx+c)
Verification:
Let,
y=3tanx+c
differentiating both sides w.r.t x we get:
dydx=ddx(3tanx+c)
dydx=3(sec2x)+0 (using, ddx(tanx)=sec2x,ddx(xn)=nxn1)
dydx=3sec2x, which is given function, p(x)=3sec2x
hence, veryfied
Step 2
Result:
3sec2xdx=3tanx+c

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?